Origin of Stereochemistry in the α-Amino Acid Esters and Amides Generated from Optically Active Zirconaaziridine Complexes ${ }^{1}$

Daniel A. Gately and Jack R. Norton*
Contribution from the Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Received November 20, 1995^{\otimes}

Abstract

Methane elimination from ethylenebis(tetrahydroindenyl)(methyl)zirconium amides ($\mathrm{R}=$ alkyl or aryl, $\left.\mathrm{R}^{\prime}=\operatorname{aryl}\right)(S, S) \mathbf{- 2 6}$ gives a mixture of epimeric zirconaaziridines $\mathbf{2 5}$ and $\mathbf{3 0}$. When zirconaaziridines with $\mathrm{R}=$ alkyl are trapped with ethylene carbonate as they are formed, methyl α-amino acid esters $\mathbf{1 6}$ are obtained in poor ee $(+14 \%$ to $-56 \%)$; the ee's of $\mathbf{1 6}$ reflect the kinetic ratio of $\mathbf{2 5}$ to $\mathbf{3 0}$. When epimeric zirconaaziridines with $\mathrm{R}=$ aryl are allowed to equilibrate before ethylene carbonate is added, the esters 16 are obtained in $>96 \%$ ee. When epimeric zirconaaziridines with $\mathrm{R}=$ alkyl are allowed to equilibrate before ethylene carbonate is added, $\mathbf{1 6}$ is obtained in $21-97 \%$ ee. When isocyanates are added to the zirconaaziridine epimers $\mathbf{2 5}$ and $\mathbf{3 0}$, phenylglycinamides are obtained in $80-99 \%$ ee. The ee's of the esters and amides are better when R^{\prime} is o-anisyl than when R^{\prime} is Ph . A Curtin-Hammett-Winstein-Holness analysis explains the stereochemistry in the esters and amides. When an equilibrated mixture of epimers ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{\prime}=o$-anisyl) $\mathbf{2 5 g}$ and $\mathbf{3 0 g}$ is treated with increasing ethylene carbonate concentrations, the ee of the ester $\mathbf{1 6 g}$ increases from 53% to 89%. The ee of $\mathbf{1 6 g}$ at saturation with ethylene carbonate implies that $K_{\text {eq }}\left(k_{25 \mathrm{~g}} / k_{\mathbf{3 g g}}\right)$ is 17.2 for the $\mathbf{3 0 g} \rightleftharpoons \mathbf{2 5 g}$ equilibrium. A similar result (19.0) is obtained from the de of the insertion product rac-38 when $\mathbf{3 0} \boldsymbol{g} \rightleftharpoons \mathbf{2 5 g}$ is treated with an excess of t-BuNCO.

Introduction

The carboxylation of long-chain amines is an attractive route for the synthesis of α-amino acids. ${ }^{2}$ Meyers and co-workers have used formamidines to attach CO_{2} synthons at the α-carbon of amines, ${ }^{3}$ e.g., the carboethoxylation of tetrahydroisoquinoline (1) in eq $1 .{ }^{3 a}$ Treatment of the metalated formamidine $\mathbf{2}$ with ethyl chloroformate gave the racemic ethyl α-amino acid ester 3.

Duhamel and co-workers have employed the optically active base 5 to effect the asymmetric carboxylation of the imine $4 .{ }^{4}$ Acidic removal of the benzylidene fragment gave the phenylglycine esters 6 in $0-41 \%$ enantiomeric excess (ee) (eq 2).

In an approach similar to the one in eq 2, Beak and co-workers have used (- -sparteine to effect the asymmetric deprotonation of 7 to give the optically active adduct $\mathbf{8}$ and, after electrophilic addition of $\mathrm{CO}_{2},(R)-9$ in 88% ee (eq 3). ${ }^{5}$

[^0]

Chong and Park have generated configurationally stable α-aminoorganolithiums $\mathbf{1 1}$ from optically active α-aminoorganostannanes $\mathbf{1 0}$. Treatment of $\mathbf{1 1}$ with CO_{2} gave the N-Bocprotected N-methyl- α-amino acids $\mathbf{1 2}$ with excellent retention of stereochemistry (eq 4). ${ }^{6}$

We have been exploring the use of zirconaaziridines ${ }^{7} \mathbf{1 3}$ to effect reactions like eq 5 . We recently reported the regioselective

insertion of CO_{2} into the $\mathrm{Zr}-\mathrm{C}$ bond of $\mathbf{1 3 b}^{8}$ to give the

[^1]Scheme 1

zirconocene α-aminocarboxylate $14 .{ }^{9}$ Because we could not obtain the desired α-amino acid from 14, we treated 13a,b with ethylene carbonate (CO_{2} synthon) to give $\mathbf{1 5 a}, \mathbf{b}$ and, after methanolysis in benzene, the racemic methyl α-amino acid esters $\mathbf{1 6 a , b}$. Treatment of $\mathbf{1 3 a}, \mathbf{b}$ with isocyanates (t-BuNCO and Me_{3-} SiNCO) gave the metallacycles 17, 18, 21, and $\mathbf{2 2}$ and, after methanolysis, the racemic phenylglycinamides $\mathbf{1 9}, \mathbf{2 0}, \mathbf{2 3}$, and 24 (Scheme 1).

Grossman, Davis, and Buchwald ${ }^{10}$ used the C_{2}-symmetric ethylenebis(tetrahydroindenyl) (EBTHI) ligand ${ }^{11}$ to prepare allylic amines in high ee from zirconaaziridines in noncoordinating solvents, ${ }^{12}$ and concluded that the ligand orients the aziridine substituent R away from the six-membered ring. We have therefore investigated the stereochemistry of ethylene carbonate (and isocyanate) insertion reactions with optically active zirconaaziridines such as (S, S, R) - $\mathbf{2 5}$; if stereoselective, such insertions should lead to enantiomerically enriched (S)-16 (or (S)-amide) (eq 6).

[^2]

Results and Discussion

Asymmetric Carbomethoxylation of $\mathbf{R C H}_{2} \mathbf{N H R}^{\prime}$ When \mathbf{R} Is Aromatic. One would expect elimination of methane from the racemic zirconium amide rac-26a, generated from $\mathrm{PhCH}_{2} \mathrm{~N}$ (Li) Ph and rac -[EBTHI]ZrMe(OTf), in THF (eq 7), to give the

single diastereomer rac-25a drawn in eqs 6 and 7. When rac26a was prepared at $-40^{\circ} \mathrm{C}$ in $T H F$ and warmed to room temperature, 25a was indeed formed; only one diastereomer was detectable by ${ }^{1} \mathrm{H}$ NMR. However, as reported by Grossman and Buchwald, ${ }^{10} \mathrm{rac}$-26a at room temperature in benzene gave instead the zirconaisoindole rac-27 (eq 8).

Separate signals (like those we had seen ${ }^{9}$ with the unsubstituted cyclopentadienyl analog 13a) could not be seen for free and coordinated THF in a solution of 25a. However, other experiments imply that the THF is coordinated to the Zr in $\mathbf{2 5 a}$ (as in 13a). Dissolving rac-27 in THF- d_{8} at room temperature converts it to rac-25a (eq 9).

Treatment of $(S, S, R) \mathbf{- 2 5 a}-\mathbf{c}$ with ethylenecarbonate should produce the spirocyclic complexes (S, S, S)-28a-c, and methanolysis of (S, S, S)-28a-c should give the S - α-amino acid esters 16a-c (Scheme 2). When $(S, S, R)-\mathbf{2 5 a}-\mathbf{c}$ was treated with ethylene carbonate, methanolysis, carried out in the presence of added $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2},{ }^{13}$ gave the methyl α-amino acid esters (+)-16a-c in $53-67 \%$ overall yield and $>96 \%$ ee (Table 1, Scheme 2).
(13) With the EBTHI ligand we found Zr -promoted transesterification ${ }^{9}$ (like that of 29) to be extremely slow unless $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ was added.
Scheme 2

Table 1. Product Yields, Configurations, and ee's of (S)-16a-c from the Reaction of Ethylene Carbonate with $(S, S, R)-\mathbf{2 5 a}-\mathbf{c}^{a}$ (Scheme 2)

product	R	R^{\prime}	yield of $\mathrm{MeO}_{2} \mathrm{CCH}(\mathrm{R}) \mathrm{NHR}^{\prime}$ $(\mathbf{1 6})^{b}(\%)$	configuration/ (optical sign)	ee^{c} $(\%)$
$\mathbf{1 6 a}$	Ph	Ph	60	$S /(+)$	>98
$\mathbf{1 6 b}^{d}$	Ph	Ar	67	$S /(-)$	96
$\mathbf{1 6 c}$	Ar	Ar	53	$S /(-)$	98

${ }^{a}(S, S, R)-\mathbf{2 5 a}-\mathbf{c}$ was prepared at room temperature. ${ }^{b}$ Isolated yields, $>98 \%$ pure by HPLC and ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Obtained from stationary phase chiral HPLC. ${ }^{d} \mathrm{Ar}=o$-anisyl.

Scheme 3

The absolute stereochemistry of $(+)$-16a has been assigned by comparing the sign of its rotation to that of its enantiomer (-)-16a. ${ }^{14}$ The absolute configuration of (-)-16a is known to be R, so the absolute configuration of (+)-16a must therefore be S. A product $(\mathbf{1 6})$ of the same configuration (S) is predicted if ethylene carbonate inserts into the $\mathrm{Zr}-\mathrm{C}$ bond of $(S, S, R)-\mathbf{2 5}$ with retention of stereochemistry. The absolute stereochemistry of the other products ($\mathbf{1 6 b}, \mathbf{c}$) ($\mathrm{R}=$ aromatic) formed by the same procedure (Scheme 2) is also presumed to be S.

Asymmetric Carbomethoxylation of $\mathbf{R C H}_{2} \mathbf{N H R}^{\prime}$ When \mathbf{R} Is Alkyl. For $\mathrm{R}=$ alkyl $(\mathbf{2 6 d}-\mathbf{g})$ elimination of methane and formation of $\mathbf{2 5 d}-\mathbf{g}$ occurred during several h at $70^{\circ} \mathrm{C}$ (Scheme 3). When the mixture containing $(S, S, R)-\mathbf{2 5 d}-\mathbf{g}$ was cooled to room temperature and treated with ethylene carbonate, methanolysis gave $\mathbf{1 6 d}-\mathbf{g}$ in $5-61 \%$ yield and $21-97 \%$ ee (Table 2). The absolute stereochemistry of $(-) \mathbf{- 1 6 d}$ has been assigned by comparing the sign of its rotation to that of its enantiomer (+)-16d. ${ }^{15}$ The absolute configuration of $(+)-\mathbf{1 6 d}$ is known to be R, so the absolute configuration of (-)-16d must be S. The absolute stereochemistry of the other products (16e-

[^3]Table 2. Product Yields, Configurations, and ee's of $(S) \mathbf{- 1 6 d}-\mathbf{g}$ from the Reaction of Ethylene Carbonate with $(S, S, R)-\mathbf{2 5 d}-\mathbf{g}^{a}$ (Scheme 3)

| | yield of
 $\mathrm{MeO}_{2} \mathrm{CCH}(\mathrm{R}) \mathrm{NHR}^{\prime}$
 $(\mathbf{1 6})^{b}(\%)$ | | | | |
| :---: | :--- | :---: | :---: | :---: | :---: | | configuration/ |
| :---: |
| (optical sign) |\quad| ee^{c} |
| :---: |
| $(\%)$ |

${ }^{a}(S, S, R)-\mathbf{2 5 d}-\mathbf{f}$ was prepared at $70^{\circ} \mathrm{C}$ and then allowed to cool to room temperature before addition of ethylene carbonate. ${ }^{b}$ Isolated yields, $>98 \%$ pure by HPLC and ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Obtained from stationary phase chiral HPLC. ${ }^{d} \mathrm{Ar}=o$-anisyl.

Table 3. Product Yields, Configurations, and ee's of 16a,c-f Obtained from Trapping 25a, $\mathbf{c}-\mathbf{f}^{a}$ with Ethylene Carbonate (Schemes 4 and 5)

yield of $\mathrm{MeO}_{2} \mathrm{CCH}(\mathrm{R}) \mathrm{NHR}^{\prime}$ $(\mathbf{1 6})^{b}(\%)$						
product	R	R^{\prime}	configuration/ (optical sign)	T $\left({ }^{\circ} \mathrm{C}\right)$	ee^{c} $(\%)$	
$\mathbf{1 6 a}$	Ph	Ph	trace	$S /(+)$	-40	
$\mathbf{1 6 c} \mathrm{~Pa}^{d}$	Ar	Ar	43	$S /(-)$	-40	>99
$\mathbf{1 6 d}$	Me	Ph	68	$S /(-)$	70	22
$\mathbf{1 6 e}$	Me	Ar	58	$R /(+)$	70	56
$\mathbf{1 6 f}$	$i-\mathrm{Bu}$	Ar	51	$S /(-)$	70	14
$\mathbf{1 6 g}$	$\mathrm{CH}_{2} \mathrm{Ph}$	Ar	49	$R /(-)$	70	52

${ }^{a} \mathbf{2 5 a}, \mathbf{c}$ were prepared from 26a,c at $-40^{\circ} \mathrm{C} ; \mathbf{2 5 d}-\mathbf{f}$ were prepared at $70{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Isolated yields, $>98 \%$ pure by HPLC and ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Obtained from stationary phase chiral HPLC. ${ }^{d} \mathrm{Ar}=o$-anisyl.
g) $(\mathrm{R}=$ alkyl $)$ formed by the same procedure (Scheme 3) is also presumed to be S.

In Situ Trapping of $\mathbf{2 5 d} \mathbf{- g}$ with Ethylene Carbonate at $70{ }^{\circ} \mathbf{C}$. It seemed possible that the yields of the insertion products $(S, S, S) \mathbf{- 2 8 d}-\mathbf{g}$ and the methanolysis products (S)$\mathbf{1 6 d}-\mathbf{g}$ would improve if ethylene carbonate were present as (S, S, R)-25d- \mathbf{g} formed. (Buchwald and Grossman had obtained good yields and high ee's of allylic amines by generating zirconaaziridines in the presence of alkynes. ${ }^{10,12}$)

If methane elimination from (S, S)-26d- \mathbf{g} gave $(S, S, R)-\mathbf{2 5 d}-$ \mathbf{g}, trapping with ethylene carbonate (and retention of stereochemistry in the insertion step) would give (S, S, S)-28d- \mathbf{g}. Methanolysis of (S, S, S)-28d- \mathbf{g} should give ($(S) \mathbf{- 1 6 d}-\mathbf{g}$. In fact we obtained $(S)-(-)-\mathbf{1 6 d}$ in 68% yield (improved from 5% in Scheme 3) and (S)-(-)-16f in 51% yield, although in poor ee (22% for $(S)-(-)-16 d$ and 14% for $(S)-(-)-\mathbf{1 6 f})$ (Table 3, Scheme 4).

To our surprise, the products $(R)-(+)-16 e(f r o m(S, S)-26 e)$ and $(R)-(-)-\mathbf{1 6 g}$ (from $(S, S) \mathbf{- 2 6 g})$ had R configurations, opposite that (S) predicted by Scheme 3! If the insertion occurred with retention, the R configuration must have come from (S, S, S)30e,g via (S, S, R)-31e,g (Scheme 4). ${ }^{16}$

In Situ Trapping of 25a,c with Ethylene Carbonate below Room Temperature. We then examined the effect of trapping 25a,c with ethylene carbonate as it was formed. A THF solution containing (S, S)-26c (prepared as in Scheme 2) was treated with ethylene carbonate and $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ at $-40{ }^{\circ} \mathrm{C}$. (Solutions of $\mathbf{2 5 a} \mathbf{- c}$ are red in the absence of ethylene carbonate; a persistent yellow color suggested that (S, S, R)-25c was short-lived.) Methanolysis gave (S)-(-)-16c in 43% yield and $>99 \%$ ee (Scheme 5, Table 3). However, similar treatment of (S, S)-26a $\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ph}\right)$ gave only trace amounts of $(S)-(+)-16 \mathbf{a}$ (Table 3).
(15) Paradisi, M. P.; Romeo, A. J. Chem. Soc., Perkin Trans. 1 1977, 596.
(16) $\mathrm{C}-\mathrm{H}$ epimerization of the esters $\mathbf{1 6}$ (or amides) was not detected (via loss of optical rotation) under the conditions used in the workup procedure.

Scheme 4

Scheme 5

\boldsymbol{N}-Ph vs \boldsymbol{N}-o-Anisyl. In Scheme 2, good yields and excellent ee's were obtained for $(S) \mathbf{- 1 6 a}-\mathbf{c}$ regardless of whether R^{\prime} was Ph or o-anisyl. However, in Schemes 4 and 5, when (S, S, R) 25 was trapped by ethylene carbonate as it was formed, the nature of R^{\prime} had a dramatic effect on the ee and yield of (S) 16. (In Table 3, compare the ee's and yields of $\mathbf{1 6 a}\left(\mathrm{R}^{\prime}=\mathrm{Ph}\right)$ vs those of $\mathbf{1 6 c}\left(\mathrm{R}^{\prime}=o\right.$-anisyl), and those of $\mathbf{1 6 d}\left(\mathrm{R}^{\prime}=\mathrm{Ph}\right)$ vs those of $\mathbf{1 6 e}-\mathbf{g}\left(\mathrm{R}^{\prime}=o\right.$-anisyl).)

Whether ethylene carbonate was added after (Scheme 3) or before (Scheme 4) (S, S, R)-25d was formed, the ee of $\mathbf{1 6 d}\left(\mathrm{R}^{\prime}\right.$ $=\mathrm{Ph}$) was not affected. (Compare the 21% ee of $\mathbf{1 6 d}$ in Scheme 3 vs 22% in Scheme 4.) In contrast, the ee's of $\mathbf{1 6 e - g}$ ($\mathrm{R}^{\prime}=o$-anisyl) declined, and in some cases reversed, between the conditions used in Scheme 3 and those used in Scheme 4. (Compare the $53-97 \%$ ee of $\mathbf{1 6 e}-\mathbf{g}$ in Scheme 3 vs the ee's ($14 \% S$ to $56 \% R$) in Scheme 4.)

Origin of Stereochemistry in the Methyl α-Amino Acid Esters 16. In an effort to understand how R^{\prime} and different reaction conditions affect the stereochemistry in 16, we have investigated the mechanisms of the key steps in Schemes 2-5.

Stereochemistry of Zirconaaziridine Intermediates. An explanation for the poor ee's of $\mathbf{1 6 d} \mathbf{- g}$ in Scheme 4 can be deduced from an elaborate deuterium labeling study performed by Grossman. ${ }^{10 \mathrm{~b}}$ The ratio of MeH to MeD loss in Scheme 6 (and related experiments) reflects not only the isotope effect but the stereoselectivity. Because an infinitely large (or small) 32h- d_{1} / d_{0} isotope ratio did not result from this experiment, Grossman concluded that the $\mathrm{C}-\mathrm{H}$ activation step $\mathbf{2 6 h} \rightarrow \mathbf{2 5 h}$ / 30h was not very diastereoselective.

The fact that (1) Grossman and Buchwald obtained the S

Scheme 6

configuration of allylic amines 32 in high ee ${ }^{17}$ and (2) we obtained the S configuration of the methyl α-amino acid esters 16 in Schemes 2, 3, and 5 suggests that the zirconaaziridine in both cases is largely $(S, S, R)-\mathbf{2 5}$. However, if interconversion of $\mathbf{2 5}$ and $\mathbf{3 0}$ is facile, the insertion reactions can be described by eq 10 and analyzed by the Curtin-Hammett-WinsteinHolness principle. ${ }^{18}$

Curtin-Hammett-Winstein-Holness Principle. If the enantiomeric purity of $\mathbf{1 6}$ in Schemes 2 and 3 is governed by eq 10 , it should depend on the first-order rate constants k_{25} and k_{30} in the $\mathbf{3 0} \rightleftharpoons \mathbf{2 5}$ equilibrium and the competing k_{R} [ethylene carbonate] and k_{S} [ethylene carbonate], where k_{R} and k_{S} are second-order rate constants.

Boundary Condition I. ${ }^{18 a}$ In reference to eq 10 , if k_{25} and $k_{30} \gg k_{R}$ [ethylene carbonate] and k_{S} [ethylene carbonate], the (S) $\mathbf{- 1 6} /(R)-\mathbf{1 6}$ product ratio is given by eq 11 where $K_{\text {eq }}=k_{25} /$ k_{30}. The $(S)-\mathbf{1 6} /(R)-\mathbf{1 6}$ product ratio in eq 11 depends on both the first-order (k_{25}, k_{30}) and second-order (k_{R}, k_{S}) rate constants in eq 10 .

$$
\begin{equation*}
\frac{(S)-\mathbf{1 6}}{(R)-16}=\frac{(S, S, S)-\mathbf{2 8}}{(S, S, R)-\mathbf{3 1}}=K_{\mathrm{eq}} \frac{k_{S}}{k_{R}} \tag{11}
\end{equation*}
$$

Boundary Condition II. ${ }^{18 a}$ Alternatively, if k_{25} and $k_{30} \ll$ k_{R} [ethylene carbonate] and k_{S} [ethylene carbonate], the (S)-16/ $(R)-\mathbf{1 6}$ product ratio is given by eq 12 . The $(S)-\mathbf{1 6} /(R)-\mathbf{1 6}$ product ratio in eq 12 reflects the equilibrium ratio $\mathbf{3 0} \rightleftharpoons \mathbf{2 5}$ in eq 10 and depends only on the first-order rate constants k_{25} and k_{30} there.

$$
\begin{equation*}
\frac{(S)-16}{(R)-16}=\frac{(S, S, S)-28}{(S, S, R)-31}=K_{\mathrm{eq}} \tag{12}
\end{equation*}
$$

A simple way of seeing if the ee in $\mathbf{1 6}$ reflects the operation of eq 10 is to measure the $(S)-\mathbf{1 6} /(R) \mathbf{- 1 6}$ ratio (ee) as the concentration of added ethylene carbonate increases or decreases. An increase or decrease in the ee of $\mathbf{1 6}$ should occur as we move from boundary condition I to boundary condition II.

[^4]Table 4. Product Yields, Configurations, and ee's of $\mathrm{MeO}_{2} \mathrm{CCH}(\mathrm{R}) \mathrm{NHR}^{\prime}(\mathbf{1 6 a}, \mathbf{c}, \mathbf{f}, \mathbf{g})$ from Addition of Various Concentrations of Ethylene Carbonate to 25a,c,f, \mathbf{g}^{a}

entry	product	R	R^{\prime}	yield $^{b}(\%)$	configuration/(optical sign)	$\mathrm{ee}^{c}(\%)$	amount of ethylene carbonate (mmol) in a volume of approximately 20 mL
1	16a	Ph	Ph	60	$S /(+)$	>98	0.64
2	16a	Ph	Ph	24	$S /(+)$	>98	6.4
$3{ }^{\text {d }}$	16c	Ar	Ar	53	$S /(-)$	98	0.64
4	16c	Ar	Ar	35	$S /(-)$	92	6.4
5	16 f	$i-\mathrm{Bu}$	Ar	61	$S /(-)$	54	0.64
6	$16 f$	$i-\mathrm{Bu}$	Ar	24	$S /(-)$	79	6.4
7	16 g	$\mathrm{CH}_{2} \mathrm{Ph}$	Ar	34	$S /(+)$	53	0.64
8	16 g	$\mathrm{CH}_{2} \mathrm{Ph}$	Ar	31	$S /(+)$	77	1.6
9	16 g	$\mathrm{CH}_{2} \mathrm{Ph}$	Ar	27	$S /(+)$	85	6.4
10	16 g	$\mathrm{CH}_{2} \mathrm{Ph}$	Ar	14	$S /(+)$	89	19.2
11	16 g	$\mathrm{CH}_{2} \mathrm{Ph}$	Ar	49	$\mathrm{R} /(-)$	52	0.64
12	16 g	$\mathrm{CH}_{2} \mathrm{Ph}$	Ar	35	$R /(-)$	54	6.4

[^5]

Figure 1. Percent ee of $(S)-(+)-\mathbf{1 6 g}$ vs amount of ethylene carbonate (mmol) in a volume of approximately 20 mL . Data points were taken from entries $7-10$ in Table 4 . $(S, S, R) \mathbf{- 2 5 g}(0.32 \mathbf{~ m m o l})$ was prepared at room temperature and then treated with ethylene carbonate.

Ethylene Carbonate Concentration vs the ee of 16. Indeed, when $\mathbf{2 5 g}(0.32 \mathrm{mmol})$ was treated with increasing ethylene carbonate concentrations (from 0.64 to 19.2 mmol , in a volume of approximately 20 mL , entries $7-10$ in Table 4), the ee of $(S)-(+) \mathbf{- 1 6 g}$ increased from 53% to 89% (Figure 1) and then leveled off. The ee (89%) of $(S)-(+) \mathbf{- 1 6 g}$ at saturation (Figure 1) therefore reflects the equilibrium ratio $\mathbf{3 0 g} \rightleftharpoons \mathbf{2 5 g} ; K_{\text {eq }}=$ 17.2 from eq 12. Similar results were obtained when $\mathbf{2 5 f}$ (0.32 $\mathrm{mmol})$ was treated with increasing ethylene carbonate concentrations (from 0.64 to 6.4 mmol , in a volume of approximately 20 mL , entries 5 and 6 in Table 4); the ee of $(S)-(+)-\mathbf{1 6 f}$ increased from 54% to 79%.

The opposite trend was observed when $\mathbf{2 5 c}(0.32 \mathrm{mmol})$ was treated with increasing ethylene carbonate concentrations (from 0.64 to 6.4 mmol , in a volume of approximately 20 mL , entries 3 and 4 in Table 4); the ee of (S)-(-)-16c decreased from 98% to 92%. The latter may reflect the equilibrium ratio $\mathbf{3 0 c} \rightleftharpoons$ 25c.

However, when 25a $(0.32 \mathrm{mmol})$ was treated with increasing ethylene carbonate concentrations $(0.64 \rightarrow 6.4 \mathrm{mmol}$, in a volume of approximately 20 mL , entries 1 and 2 in Table 4), the ee of $(S)-(+)-\mathbf{1 6 a}$ did not change. This result suggested that boundary condition II was applicable even when only 0.64 mmol of ethylene carbonate was added. The 30a $\rightleftharpoons \mathbf{2 5 a}$ equilibrium therefore lies far to the right; $K_{\mathrm{eq}} \approx 99$ from eq 12 .

Ratio of $\boldsymbol{k}_{\boldsymbol{S}}$ to $\boldsymbol{k}_{\boldsymbol{R}}$ for Various Zirconaaziridines (eq 11). Because $K_{\text {eq }}(17.2)$ is known for the $\mathbf{3 0} \mathbf{g} \rightleftharpoons \mathbf{2 5 g}$ equilibrium in the upper limit (entry 10, Table 4) of ethylene carbonate concentration, we can calculate what k_{S} / k_{R} would be if entry 7 (Table 4) represents the lower limit (boundary condition I). The ee of 53% implies that $k_{S} / k_{R}<0.19$ (eq 11). The k_{R} [ethylene
carbonate] step in eq 10 is at least five times faster with the minor diastereomer $\mathbf{3 0 g}$ than the k_{S} [ethylene carbonate] step is with the major diastereomer $\mathbf{2 5 g}$.

In contrast, if the ee (92%) of $(S)-(-)$ - 16c reflects the equilibrium ratio $\mathbf{3 0} \mathbf{c} \rightleftharpoons \mathbf{2 5} \mathbf{c}$ in the upper limit (entry 4 , Table 4) of ethylene carbonate concentration, then $K_{\text {eq }} \approx 24.0$ from eq 12. The ee (98%) of $(S)-(-)-\mathbf{1 6 c}$ at the lowest feasible ethylene carbonate concentration (entry 3, Table 4) combined with $K_{\text {eq }}(24.0)$ gives $k_{S} / k_{R}>4.1$ from eq 11 for $\mathbf{2 5 c}$ and $\mathbf{3 0 c}$. The k_{S} [ethylene carbonate] step in eq 10 is at least 4 times faster with the major diastereomer $\mathbf{2 5 c}$ than the k_{R} [ethylene carbonate] step is with the minor diastereomer 30c.

Curtin-Hammett-Winstein-Holness Conditions Are Not Achieved in Scheme 4. A Curtin-Hammett-WinsteinHolness situation requires that a mixture of $\mathbf{3 0} \rightleftharpoons \mathbf{2 5}$ be initially equilibrated. Because the $\mathbf{2 5} / \mathbf{3 0}$ ratio in Scheme 4 is kinetically controlled, i.e., $\mathbf{2 5}$ and $\mathbf{3 0}$ have not been equilibrated, the product ratio should be insensitive to the concentration of ethylene carbonate. Indeed, when $(S, S)-\mathbf{2 6 g}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{\prime}=o\right.$-anisyl; 0.32 mmol) was heated to $70^{\circ} \mathrm{C}$ in the presence of increasing ethylene carbonate concentrations (from 0.64 to 6.4 mmol , in a volume of approximately 20 mL , entries 11 and 12 in Table 4), the ee of $(R)-(-)-\mathbf{1 6 g}$ increased negligibly from 52% to 54%.

Direct Measurement of $\boldsymbol{K}_{\text {eq }}$ in Eq 10? We then attempted to measure the equilibrium ratio $\mathbf{3 0} \rightleftharpoons \mathbf{2 5}$ directly by ${ }^{1} \mathrm{H}$ NMR. The required zirconaaziridine rac-25g was obtained by adding $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NLi}(o$-anisyl) to rac-[EBTHI]ZrMe(OTf) and heating the solution in benzene to $70{ }^{\circ} \mathrm{C}$ overnight; during this time methane was eliminated from rac-26g to give rac-25g in quantitative yield. Unfortunately, direct ${ }^{1} \mathrm{H}$ NMR observation of the product mixture containing rac- $\mathbf{2 5 g}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature (or at $-105{ }^{\circ} \mathrm{C}$ in THF- d_{8} or $-95^{\circ} \mathrm{C}$ in toluened_{8}) showed only one compound and offered no evidence for the equilibrium mixture $r a c-\mathbf{3 0 g} \rightleftharpoons r a c-\mathbf{2 5 g}$.

Ethylene Carbonate Concentration vs Insertion Product Ratio (28/31). When rac-25g (ca. $19.6 \mu \mathrm{~mol})$ was treated with $\sim 26 \mu \mathrm{~mol}$ of ethylene carbonate in a volume of approximately 0.5 mL for 1 h , an 84/16 rac- $\mathbf{2 8 g} / \mathrm{rac}-\mathbf{3 1 g}$ product ratio resulted ($t_{1 / 2} \approx 12 \mathrm{~min}$). When the concentration of ethylene carbonate was increased to $\sim 190 \mu \mathrm{~mol}$, in a volume of approximately 0.5 mL , a $94 / 6 \mathrm{rac-28g} / \mathrm{rac}-\mathbf{3 1 g}$ product ratio resulted after about $10 \mathrm{~min}\left(t_{1 / 2} \approx 2 \mathrm{~min}\right)$ (Scheme 7). The diastereomeric excess (de) of rac-28g increased from 68% to 88% (recall that a similar change in ethylene carbonate concentration increased the ee of its methanolysis product $(S)-(+)-\mathbf{1 6 g}$ from 53% to $89 \%)$. This result implied that the minor diastereomer rac-30g must have

Scheme 7

Table 5. Product Yields, Configurations, and ee's of Amides 19, 20, 23, and 24 from the Reaction of $\mathrm{R}^{\prime \prime} \mathrm{NCO}$ with $(S, S, R)-25 \mathrm{a}$ and (S,S,R)-25b ${ }^{a}$ (Scheme 8)

product	R^{\prime}	$\mathrm{R}^{\prime \prime}$	configuration/ (optical sign)	yield of amide $\mathrm{R}^{\prime \prime} \mathrm{NHCOCH}(\mathrm{Ph}) \mathrm{NHR}^{\prime} b$ $(\%)$	ee^{c} $(\%)$
$\mathbf{1 9}$	Ph	t - Bu	$\mathrm{S} /(+)$	62	92
$\mathbf{2 0}$	Ph	H	$S /(+)$	51	80
$\mathbf{2 3}^{d}$	Ar	t-Bu	$S /(-)$	31	>99
$\mathbf{2 4}^{\mathrm{An}}$	Ar	H	$S /(-)$	25	98

${ }^{a}(S, S, R)$-25a,b were prepared at room temperature. ${ }^{b}$ Isolated yields, $>98 \%$ pure by HPLC and ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Obtained from stationary phase chiral HPLC. ${ }^{d} \mathrm{Ar}=o$-anisyl.
Scheme 8

been present in equilibrium with rac-25g. (The absence of the minor diastereomer rac- $\mathbf{3 0 g}$ in the previous ${ }^{1} \mathrm{H}$ NMR experiment suggests that the rac-30g \rightleftharpoons rac- $\mathbf{2 5 g}$ interconversion is fast relative to the NMR time scale.)

Asymmetric Carboamidation of 25a. We then examined the stereoselectivity of the isocyanate insertion reactions of $\mathbf{2 5}$. Treatment of (S, S, R)-25a (prepared as in Scheme 2) with t-BuNCO should give the metallacycle ($(S, S, S$)-33 and, after protonolysis, amide $(S)-19$. In fact, we obtained $(S)-(+)-19$ in high ee (92%). Similar treatment of (S, S, R)-25a with $\mathrm{Me}_{3^{-}}$ SiNCO gave, after protonolysis, (S)-(+)-20 in good ee (80%) (Table 5, Scheme 8). The absolute configurations of (+)-19 and (+)-20 were assumed to be S, because they were from the same (S, S, R)-25a that had given (S)-16a (see Table 1 and accompanying discussion).

Asymmetric Carboamidation of 25b. In contrast, treatment of (S, S, R)-25b with t-BuNCO gave, after protonolysis, (S) (-)-23 in excellent ee ($>99 \%$) but low yield. Similar treatment of (S, S, R)-25b with $\mathrm{Me}_{3} \mathrm{SiNCO}$ gave, after protonolysis, (S) -

Scheme 9

(-)-24 (98\% ee), also in low yield (Table 5, Scheme 8). The absolute stereochemistry of $(-)-\mathbf{2 3}$ and (-)-24 formed by the same procedure (Scheme 8) was also presumed to be S.
$\mathbf{Z r} \leftarrow \mathbf{O}$ Chelation in 25b Slows Insertion Reactions. The low yields of $(S)-(-)-23$ and $(S)-(-)-24$ reflect the slow insertion reaction of $\mathrm{R}^{\prime \prime} \mathrm{NCO}$ with (S, S, R) - $\mathbf{2 5 b}$, presumably because of the $\mathrm{Zr} \leftarrow \mathrm{O}$ interaction from the N - o-anisyl fragment in (S, S, R) 25b. When rac-25b was treated with about 4.1 equiv of t-BuNCO in THF- $d_{8}, 6$ days ($t_{1 / 2} \approx 29 \mathrm{~h}$) was required to obtain the metallacycle rac-35 in quantitative yield (Scheme 9) (the minor diastereomer rac-37 was not detected by ${ }^{1} \mathrm{H}$ NMR). Overall, inserting reagents react much faster when R^{\prime} is Ph in 25 (or when R^{\prime} is Ph in 13) than they do when R^{\prime} is o-anisyl.

Origin of Stereochemistry in the Amides 19, 20, 23, and 24. As with the esters (S) - $\mathbf{1 6}$ in eqs $10-12$, the enantiomeric purity of the amides $\mathbf{1 9}, \mathbf{2 0}, \mathbf{2 3}$, and 24 from Scheme 8 should reflect the operation of the Curtin-Hammett-WinsteinHolness equations (eqs 13-15).

(Boundary Condition I,
$k_{25}, k_{30} \gg k_{R}$ [R"NCO], $\left.k_{S}\left[\mathrm{R}^{\prime \prime} \mathrm{NCO}\right]\right)$
$\frac{(S) \text {-amide }}{(R) \text {-amide }}=\frac{(S) \text {-insertion product }}{(R) \text {-insertion product }}=K_{\mathrm{eq}} \frac{k_{S}}{k_{R}}$
(Boundary Condition II,
$k_{25}, k_{30} \ll k_{R}$ [R"NCO], k_{S} [R"NCO])
$\frac{(S) \text {-amide }}{(R) \text {-amide }}=\frac{(S) \text {-insertion product }}{(R) \text {-insertion product }}=K_{\text {eq }}$

Effect of \boldsymbol{t}-BuNCO Concentration on the Stereochemistry of the Amides. The addition of a dilute ${ }^{19}$ solution of t-BuNCO to excess (S, S, R)-25a gave a significant decrease in the ee of $(S)-(+)-19$ from the one (92% ee) found above (Scheme 8, Table 5). When $(S, S, R)-\mathbf{2 5 a}(0.320 \mathrm{mmol})$ was treated with t-BuNCO ($32 \mathrm{mM}, 0.256 \mathrm{mmol}$), the ee of $(S)-(+)-\mathbf{1 9}$ decreased to 36% (Scheme 10).

[^6]
Scheme 10

Scheme 11

rac-38

Scheme 12

stereochemical outcome opposite that predicted by K_{eq}

$$
k[\text { inserting reagent }] \uparrow \text { slow }
$$

$k[$ inserting reagent $] \downarrow$ fast
stereochemical outcome determined by K_{eq}
Ratio of \boldsymbol{k}_{S} to $\boldsymbol{k}_{\boldsymbol{R}}$ for the Zirconaaziridines in Scheme 10. The ee (36%) of $(S)-(+)-19$ in the limit of low t-BuNCO concentration implies that $k_{\mathrm{S}} / k_{\mathrm{R}}<0.02$ from eq 14 . Thus, the $k_{R}[t-\mathrm{BuNCO}]$ step with the minor diastereomer 30a in Scheme 10 is at least 50 times faster than the $k_{s}[t-\mathrm{BuNCO}]$ step with the major diastereomer 25a.
$K_{\text {eq }}$ Is Independent of Inserting Reagent. $K_{\text {eq }}$ for the $\mathbf{3 0} \rightleftharpoons \mathbf{2 5}$ equilibrium is independent of the nature of the inserting reagent (ethylene carbonate or t-BuNCO). Thus, the product ratio in eq 15 should be the same as that in eq 12. In fact, when $\mathrm{rac}-\mathbf{2 5 g}$ (ca. $20.1 \mu \mathrm{~mol}$) was treated with excess t-BuNCO (ca. $454 \mu \mathrm{~mol}$, in a volume of approximately 0.5 mL), a $95 / 5$ rac-38/rac-39 ratio was obtained in the ${ }^{1} \mathrm{H}$ NMR (Scheme 11). This result gives $K_{\text {eq }}=19.0$ from eq 15 for the $\mathbf{3 0 g} \rightleftharpoons \mathbf{2 5 g}$ equilibrium mixture, similar to the one ($K_{\text {eq }}=17.2$) found (see discussion below eq 12) from the addition of excess ethylene carbonate to the equilibrium mixture $\mathbf{3 0} \mathrm{g} \rightleftharpoons \mathbf{2 5 g}$.

Influence of the Rate of Insertion on Stereoselectivity. Two reagents that insert at different rates may give different stereochemical results with the same zirconaaziridine. Equations 10 and 13 predict that the stereochemistry of the insertion product should depend on the rate at which inserting reagents add to the equilibrium mixture $\mathbf{3 0} \rightleftharpoons \mathbf{2 5}$. If an inserting reagent adds to the $\mathbf{3 0} \rightleftharpoons \mathbf{2 5}$ equilibrium mixture in a fast step (k [inserting reagent $] \gg k_{\text {forward }}$ or $k_{\text {back }}$ of the equilibrium) and $K_{\text {eq }}$ is large, the stereochemical outcome of the insertion product

Scheme 13

should reflect $K_{\text {eq }}$ (Scheme 12); the ee of the hydrolysis product should therefore be high. The opposite effect is predicted when an inserting reagent adds in a slow step (k [inserting reagent] \ll $k_{\text {forward }}$ or $k_{\text {back }}$ of the equilibrium).

The validity of Scheme 12 is evident when the rates and stereoselectivities of the ethylene carbonate insertions of $\mathbf{2 5}$ are compared with those of the isocyanate ones. Ethylene carbonate reacts about 3 times more rapidly with $\mathbf{2 5 g}$ than does t-BuNCO: when rac- $\mathbf{2 5 g}$ (ca. $17.6 \mu \mathrm{~mol}$) was treated at room temperature with ca. $22.2 \mu \mathrm{~mol}$ of either reagent in a volume of approximately 0.5 mL , the ethylene carbonate reaction (Scheme 7) took only $1 \mathrm{~h}\left(t_{1 / 2} \approx 12 \mathrm{~min}\right.$) whereas the t-BuNCO reaction (Scheme 11) took $3 \mathrm{~h}\left(t_{1 / 2} \approx 36 \mathrm{~min}\right)$. As predicted by Scheme 12, the de was considerably higher (68% vs 28%) with ethylene carbonate.

Reagents less reactive than isocyanates put us closer to boundary condition I and give results even further removed from $K_{\text {eq }}$. Treatment of rac-25a ($\sim 20 \mu \mathrm{~mol}$) with 2-butyne (ca. 83.0 $\mu \mathrm{mol}$, in a volume of approximately 0.5 mL) gave rac-41a in 28% de (eq 16), whereas treatment of $\mathrm{Me}_{3} \mathrm{SiNCO}$ (ca. 24.0

$\mu \mathrm{mol}$, in a volume of approximately 0.5 mL) gave rac-40 in 80% de. However, sufficiently high concentrations of even a relatively unreactive reagent such as 2-butyne move us back toward the bottom of Scheme 12 (boundary condition II). Increasing the concentration of 2-butyne from 0.03 to 12.8 mM increased the de of rac-41a from 24% to 99% !

Mechanism of $\mathbf{3 0} \rightleftharpoons \mathbf{2 5}$ Epimerization? In order for the $\mathbf{3 0} \rightleftharpoons \mathbf{2 5}$ epimerization to occur, the $\mathrm{Zr}-\mathrm{C}$ bond must cleave from $\mathbf{3 0}$ to give either a $\mathrm{Zr}(\mathrm{II})$-imine complex such as $\mathbf{4 2}$ or a Zr (III) complex such as $\mathbf{4 3}$ with a carbon radical. ${ }^{20}$ After rotation of the $(\mathrm{Ph}) \mathrm{CH}-\mathrm{N}$ bond and inversion of configuration of the carbon ($\mathbf{4 3}^{\prime}$), recombination of the $\mathrm{Zr}-\mathrm{C}$ bond in $\mathbf{4 3}^{\prime}$ would give 25 . With 42, recombination of its $\mathrm{Zr}-\mathrm{C}$ bond is all that is required to give 25 (Scheme 13).

[^7]
Scheme 14

In an unrelated study we found evidence of a $\mathrm{Zr}(\mathrm{II})$-imine complex like the one shown (42) in Scheme 13. We expected treatment of the lithium amide (o-anisyl) $\mathrm{CH}_{2} \mathrm{~N}(\mathrm{Li}) \mathrm{CH}_{2} \mathrm{Ph}$ with $\mathrm{Cp}_{2} \mathrm{ZrMe}$ (OTf) to give the (methyl-)zirconium amide 44 and, after regioselective $\mathrm{C}-\mathrm{H}$ activation and loss of methane, the zirconaaziridine 13i in eq 17.

The (methyl-)zirconium amide $\mathbf{4 4}$ was easily isolated. However, to our surprise, we obtained (E)-45 (84\%) and (Z)-45 (16%) instead of $\mathbf{1 3 i}$ (Scheme 14)! The NMR of $\mathbf{4 5}$ shows a ${ }^{1} \mathrm{H}$ methine singlet resonance ($\delta 8.09, \delta 7.95$) and a ${ }^{13} \mathrm{C}$ methine carbon resonance ($\delta 176.0$), indicative of the $\mathrm{CH}=\mathrm{N}$ imine fragment in 45; these ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances are well downfield of the ${ }^{1} \mathrm{H}$ methine proton resonance ($\delta 3-4 \mathrm{ppm}$) and ${ }^{13} \mathrm{C}$ methine carbon resonance ($\delta 60-70 \mathrm{ppm}$) expected in the zirconaaziridine 13i. Moreover, the ${ }^{1} \mathrm{H}$ resonance of the Cp 's for $(E)-\mathbf{4 5}(\delta 5.71)$ and $(Z)-45(\delta 5.85)$ and the ${ }^{1} \mathrm{H}$ resonance of the methylene signals for $(E)-\mathbf{4 5}(\delta 4.52)$ and $(Z)-\mathbf{4 5}(\delta 4.46)$ were all singlets, indicative of a plane of symmetry bisecting the CpZrCp and HCH planes. ${ }^{21}$

Possible intermediates in the $\mathbf{3 0} \rightleftharpoons \mathbf{2 5}$ interconversion are thus 46 when $\mathrm{R}^{\prime}=o$-anisyl and 47 when $\mathrm{R}^{\prime}=\mathrm{Ph}$.

46

47

Experimental Section

Materials. All air-sensitive compounds were prepared and handled under a nitrogen atmosphere, using standard Schlenk and inert-atmosphere-box techniques. Most of the solvents used were distilled under N_{2} from sodium-benzophenone ketyl; hexanes were stirred over $\mathrm{H}_{2} \mathrm{SO}_{4}$ and distilled from sodium-benzophenone ketyl in the presence of tetraglyme. Trifluoromethanesulfonic acid (TfOH) was degassed by three freeze/pump/thaw cycles at $-196^{\circ} \mathrm{C}$, and finally transferred into a flame-dried vacuum bulb. Isocyanates were stirred over $\mathrm{P}_{4} \mathrm{O}_{10}$ for 24 h and transferred by high vacuum into a flame-dried vacuum bulb. All other reagents employed were used without further purifica-

[^8]tion. $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2},{ }^{22} \mathrm{rac}-[\mathrm{EBTHI}] \mathrm{ZrMe}_{2},{ }^{23}(S, S)$-[EBTHI] $\mathrm{ZrMe}_{2},{ }^{10 \mathrm{~b}}$ and $(S, S)-[\mathrm{EBTHI}] \mathrm{ZrMe}(\mathrm{OTf})^{10 \mathrm{~b}}$ were prepared by standard procedures. $\mathrm{Cp}_{2^{-}}$ ZrCl_{2} was generously supplied by Boulder Scientific. Anilines were prepared by reduction of the carboxamide with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ as described by Brown and co-workers. ${ }^{24}$
${ }^{1} \mathrm{H}$ NMR data were collected on a Bruker WNX $300-\mathrm{MHz}$ FT spectrometer; residual solvent proton shifts were used as internal standards. Elemental analyses of air- and moisture-sensitive compounds were performed by Analytische Laboratorien, Gummersbach, Germany; those of all other compounds were performed by Midwest Laboratories, Indianapolis, IN.

Chiral stationary phase HPLC data were collected on a Varian 9050 Star Detector. Compounds 16c, 19, 20, 23, and 24 were separated on a Bakerbond OD chiralcel column; all others were separated on a Bakerbond OJ chiralcel column. All compounds were detected at 254 nm . The presence of enantiomerically enriched esters $\mathbf{1 6}$ and amides 19, 20, 23, and 24 was confirmed by spiking the HPLC samples with authentic $(\pm)-\mathbf{1 6}$ and $(\pm)-\mathbf{1 9}, \mathbf{- 2 0},-\mathbf{2 3}$, and -24. Optical rotations were obtained on a Rudolph Research automatic polarimeter Autopol III. The optical rotations $\left([\alpha]_{\text {measured }}\right)$ for 16 and $\mathbf{1 8}$ were obtained at 26 ${ }^{\circ} \mathrm{C}$. Specific rotations $\left([\alpha]_{\mathrm{D}}\right)$ are reported in deg/dm, and the concentration (c) is given in $\mathrm{g} / 100 \mathrm{~mL}(\mathrm{THF})$. The ee $(>99 \%)$ of (S, S)-[EBTHI]ZrMe_{2} was determined by treatment with excess $(R)-(-)$ - O-acetylmandelic acid in $\mathrm{C}_{6} \mathrm{D}_{6}$; the ratio of the resulting diastereomers was determined by ${ }^{1} \mathrm{H}$ NMR from the $\mathrm{sp}^{2} \mathrm{CH}$ indenyl resonances. ${ }^{10 \mathrm{~b}}$

General Procedure for the Preparation of (\pm)-16b,c $\left(\mathbf{M e O}_{2} \mathbf{C C H}-\right.$ $\left.(\mathbf{R}) \mathbf{N H R}^{\prime}\right)$. The following procedure is modified from the one described earlier. ${ }^{9}$ A solution containing $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}(378 \mathrm{mg}, 1.5 \mathrm{mmol})$ and THF $(10 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and treated with $\mathrm{TfOH}(127 \mu \mathrm{~L}, 1.44$ $\mathrm{mmol})$. The pale yellow solution was warmed to room temperature, stirred for 1 h , and again cooled to $-78^{\circ} \mathrm{C}$. In a separate flask BuLi ($1.6 \mathrm{M}, 900 \mu \mathrm{~L}, 1.44 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ ether $(10 \mathrm{~mL})$ solution containing $\mathrm{RCH}_{2} \mathrm{NHR}^{\prime}(1.44 \mathrm{mmol})$, and the solution stirred for 5 min . The $\mathrm{RCH}_{2} \mathrm{~N}(\mathrm{Li}) \mathrm{R}^{\prime}$ was transferred by cannula to the $\mathrm{Cp}_{2^{-}}$ $\mathrm{ZrMe}(\mathrm{OTf})$ and stirred for 0.5 h at $-78^{\circ} \mathrm{C}$; the solution was warmed to room temperature and stirred overnight. The solvent was removed and replaced with benzene (20 mL) containing ethylene carbonate (136 $\mathrm{mg}, 1.54 \mathrm{mmol}$). After stirring overnight, the solution was treated with $\mathrm{MeOH}(1 \mathrm{~mL})$ and stirred for an additional 8 h at $80^{\circ} \mathrm{C}$. The solvent was removed, and the residue was treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and filtered. The residue from the filtrate was spotted on a Chromatotron plate eluted with hexanes/ethyl acetate (25/1); further purification was not needed.
(\pm)-16b ($\mathbf{M e O}_{2} \mathbf{C C H}(\mathbf{P h}) \mathbf{N H}\left(\right.$ o-anisyl)). Yield: $252 \mathrm{mg}(64 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for $(土)-\mathbf{1 6 b}$ prepared by a different procedure were reported earlier. ${ }^{9}$
(\pm)-16c ($\mathrm{MeO}_{2} \mathbf{C C H}(o-$ anisyl)NH(o-anisyl)). Yield: 247 mg (52\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.45(\mathrm{~d}, 1 \mathrm{H}), 7.32(\mathrm{t}, 1 \mathrm{H}), 6.98(\mathrm{t}, 2 \mathrm{H}), 6.88-$ $6.69(\mathrm{~m}, 3 \mathrm{H}), 6.58(\mathrm{~d}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 5.47$ (v br s, 1 H$), 3.97$ (s, $3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 172.7,157.0$, $147.0,136.2,129.2,127.8,126.3,121.0,117.1,111.0,110.3,109.5$, 55.7, 55.3, 54.0, 52.4. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 67.76; H, 6.35 ; N, 4.65. Found: C, 67.89; H, 6.38; N, 4.71.

General Procedure for the Preparation of $(\pm) \mathbf{- 1 6 d}-\mathbf{g}\left(\mathbf{M e O}_{2}{ }^{-}\right.$ $\mathbf{C C H}(\mathbf{R}) \mathbf{N H R}$ '). The procedure was the same as that described above for $(\pm) \mathbf{- 1 6 b}, \mathbf{c}$, but with the following modifications. After addition of the $\mathrm{RCH}_{2} \mathrm{~N}(\mathrm{Li}) \mathrm{R}^{\prime}$ to $\mathrm{Cp}_{2} \mathrm{ZrMe}(\mathrm{OTf})$, the solution was warmed to room temperature. The solvent was removed and replaced with benzene (20 mL) containing ethylene carbonate ($136 \mathrm{mg}, 1.54 \mathrm{mmol}$); the solution was transferred to a vacuum bulb, and the bulb was sealed and then heated to $70{ }^{\circ} \mathrm{C}$ overnight.
(\pm)-16d ($\left.\mathbf{M e O}_{2} \mathbf{C C H}(\mathbf{M e}) \mathbf{N H P h}\right)$. Yield: $124 \mathrm{mg}(48 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.17(\mathrm{t}, 2 \mathrm{H}), 6.74(\mathrm{t}, 1 \mathrm{H}), 6.62(\mathrm{~d}, 2 \mathrm{H}), 4.18(\mathrm{CH} \mathrm{q}$ overlapped with NH br s, 2 H), $3.76(\mathrm{~d}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 175.1, 146.5, 129.3, 118.3, 113.8, 52.2, 51.9, 19.0. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, 67.02; H, 7.31; N, 7.82. Found: C, 67.29; H, 7.31; N, 7.78 .
(22) (a) Samuel, E.; Rausch, M. D. J. Am. Chem. Soc. 1973, 95, 6263. (b) References 7 and 9.
(23) Waymouth, R. M.; Bangerter, F.; Pino, P. Inorg. Chem. 1988, 27, 758.
(24) Brown, H. C.; Choi, Y. M.; Narasimhan, S. J. Org. Chem. 1982, 47, 3153.
(\pm)-16e ($\mathbf{M e O}_{2} \mathbf{C C H}(\mathbf{M e}) \mathbf{N H}\left(\boldsymbol{o}\right.$-anisyl)). Yield: $198 \mathrm{mg}(66 \%) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 6.88-6.67(\mathrm{~m}, 3 \mathrm{H}), 6.54(\mathrm{~d}, 1 \mathrm{H}), 4.73$ (v br s, 1 $\mathrm{H}), 4.17(\mathrm{q}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 174.9,146.8,136.3,121.0,117.3,110.0,109.6,55.2,52.0$, 51.5, 18.8. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$: C, $63.14 ; \mathrm{H}, 7.23 ; \mathrm{N}, 6.69$. Found: C, 63.00; H, 7.27; N, 6.73.
$(\pm)-16 f\left(\mathbf{M e O}_{2} \mathbf{C C H}(\boldsymbol{i}-\mathrm{Bu}) \mathbf{N H}(\boldsymbol{o}\right.$-anisyl) $)$. Yield: 195 mg (54\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.89-6.63(\mathrm{~m}, 3 \mathrm{H}), 6.56(\mathrm{~d}, 2 \mathrm{H}), 4.58(\mathrm{br} \mathrm{d}, 1$ $\mathrm{H}), 4.12(\mathrm{q}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{t}$, $2 \mathrm{H}), 1.04(\mathrm{~d}, 3 \mathrm{H}), 0.97(\mathrm{~d}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 175.1,147.0$, 136.9, 121.1, 117.3, 110.1, 109.7, 55.4, 54.7, 51.9, 42.3, 24.9, 22.7, 22.1. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}$: $\mathrm{C}, 66.91 ; \mathrm{H}, 8.42 ; \mathrm{N}, 5.57$. Found: C, 66.80; H, 8.39; N, 5.67.
$(\pm) \mathbf{- 1 6 g}\left(\mathbf{M e O}_{2} \mathbf{C C H}\left(\mathbf{C H}_{2} \mathbf{P h}\right) \mathbf{N H}(\right.$ o-anisyl $)$). Yield: $191 \mathrm{mg}(46 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.33-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.68(\mathrm{~m}, 3 \mathrm{H}), 6.55$ (d, 1 H), 4.79 (br s, 1 H$), 4.36(\mathrm{t}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $3.16(\mathrm{~d}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 173.5,147.0,136.4,136.2,129.1$, 128.3, 126.7, 121.0, 117.4, 110.3, 109.7, 57.6, 55.3, 51.8, 38.7. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$: C, 71.56; $\mathrm{H}, 6.71 ; \mathrm{N}, 4.91$. Found: $\mathrm{C}, 71.35$; H, 6.65; N, 4.89.

Preparation of Methyl α-Amino Acid Esters by Scheme 2. A Schlenk flask containing $\mathrm{RCH}_{2} \mathrm{NHR}^{\prime}(0.323 \mathrm{mmol})$ in cold $\left(0^{\circ} \mathrm{C}\right)$ ether $(5 \mathrm{~mL})$ was treated with $\mathrm{BuLi}(1.6 \mathrm{M}, 200 \mu \mathrm{~L}, 0.320 \mathrm{mmol})$ and stirred for 5 min . The $\mathrm{RCH}_{2} \mathrm{~N}(\mathrm{Li}) \mathrm{R}^{\prime}$ was transferred by cannula to a cold $\left(-40^{\circ} \mathrm{C}\right)$ THF $(5 \mathrm{~mL})$ solution containing $(S, S)-[\mathrm{EBTHI}] \mathrm{ZrMe}(\mathrm{OTf})$ ($169 \mathrm{mg}, 0.325 \mathrm{mmol}$). After 5 min at $-40^{\circ} \mathrm{C}$ and 2 h at room temperature, the red (or orange) solution was evaporated to dryness and the residue was treated with benzene $(20 \mathrm{~mL})$. A separate solution containing ethylene carbonate ($56 \mathrm{mg}, 0.640 \mathrm{mmol}$), $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ (202 $\mathrm{mg}, 1.28 \mathrm{mmol})$, and benzene $(20 \mathrm{~mL})$ was transferred by cannula to the solution containing 25 . After stirring overnight, the pale yellow solution was treated with $\mathrm{MeOH}(300 \mu \mathrm{~L})$ and heated to $80^{\circ} \mathrm{C}$ for 4 h or until the β-hydroxyethyl ester 29 was consumed (as detected by TLC). The solvent was filtered and evaporated to dryness. The residue was spotted on a Chromatotron plate and eluted with hexanes/ethyl acetate $(25 / 1) . \quad \mathrm{RCH}_{2} \mathrm{NHR}^{\prime}\left(R_{f} \approx 0.6\right)$ was separated (typically $15-$ 30%) from the band that contained $(S)-(+)$ - or $(S)-(-)-\mathbf{1 6 a}-\mathbf{c}\left(R_{f} \approx\right.$ $0.3)$. $(S)-(+)$ - or $(S)-(-)-\mathbf{1 6 a}-\mathbf{c}$ were $>98 \%$ pure by ${ }^{1} \mathrm{H}$ NMR.
$(S)-(+)-16 \mathbf{a}\left(\mathbf{M e O}_{2} \mathbf{C C H}(\mathbf{P h}) \mathbf{N H P h}\right)$ was prepared by the general Scheme 2 procedure, but with the following modifications. After 5 \min at $-40{ }^{\circ} \mathrm{C}$ and 2 h at room temperature, the orange solution changed immediately to cherry red upon addition of ethylene carbonate ($56 \mathrm{mg}, 0.640 \mathrm{mmol}$) and $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}(201 \mathrm{mg}, 0.800 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$. After stirring overnight, the solvent was evaporated and the residue was treated with benzene (20 mL) (yield $46 \mathrm{mg}(60 \%),>98 \%$ ee, hexane/ethanol (95/5), flow rate $0.85 \mathrm{~mL} / \mathrm{min}$, retention time (min) 42.4 and $\left.47.5,[\alpha]_{\mathrm{D}}=+68.3^{\circ}(c=0.315)\right)$.
$(S)-(+)-16 \mathbf{(M e O} 2 \mathbf{C C H}(\mathbf{P h}) \mathbf{N H P h})$ (entry 2, Table 4) was prepared by the general Scheme 2 procedure, except that 20 equiv (6.4 mmol) of ethylene carbonate was used (yield $18 \mathrm{mg}(23 \%),>98 \%$ ee (determined by $[\alpha]_{\text {measured }}$ in THF), $[\alpha]_{\mathrm{D}}=+70.3^{\circ}(c=0.175)$).

Data for $(\boldsymbol{S})-(-)-16 b\left(\mathbf{M e O}_{2} \mathbf{C C H}(\mathbf{P h}) \mathbf{N H}(o-\right.$-anisyl) $):$ yield 58 mg $(67 \%), 96 \%$ ee, hexane/ethanol (100/0) for 45 min , flow rate $1.0 \mathrm{~mL} /$ min and then changed to hexane/ethanol (95/5), flow rate $0.85 \mathrm{~mL} /$ \min, retention time $(\mathrm{min}) 60.3$ and $63.9,[\alpha]_{\mathrm{D}}=-35.7^{\circ}(c=0.070)$.

Data for (S)-(-)-16c ($\mathbf{M e O}_{2} \mathbf{C C H}(o-$-anisyl)NH(o-anisyl)): yield 51 $\mathrm{mg}(53 \%), 98 \%$ ee, hexane/ethanol (95/5), flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, retention time $(\mathrm{min}) 11.6$ and $25.4,[\alpha]_{\mathrm{D}}=-52.1^{\circ}(c=0.165)$.
(S)-(-)-16c (MeO2 $\mathbf{2} \mathbf{C H}(o$-anisyl)NH(o-anisyl)) (entry 4, Table 4) was prepared by the Scheme 2 procedure, except that 20 equiv (6.4 mmol) of ethylene carbonate was used (yield 34 mg ($35 \%, 92 \%$ ee), $\left.[\alpha]_{\mathrm{D}}=-52.3^{\circ}(c=0.065)\right)$.

Preparation of Methyl α-Amino Acid Esters by Scheme 3. After addition of the $\mathrm{RCH}_{2} \mathrm{~N}(\mathrm{Li}) \mathrm{R}^{\prime}$ to $(S, S)-[\mathrm{EBTHI}] \mathrm{ZrMe}(\mathrm{OTf})$ (Scheme 2 procedure), the solution was warmed to room temperature. The solvent was removed, and the residue containing (S, S) - $\mathbf{2 6}$ was treated with benzene (20 mL). The solution was transferred to a vacuum bulb and heated to $70{ }^{\circ} \mathrm{C}$ overnight. The solution was cooled to room temperature $(1 \mathrm{~h})$ and treated with ethylene carbonate $(56 \mathrm{mg}, 0.640$ $\mathrm{mmol})$ and $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}(202 \mathrm{mg}, 1.28 \mathrm{mmol})$ in benzene $(20 \mathrm{~mL})$; the bulb was sealed, and the solution was stirred at room temperature
overnight. $(S)-(+)-$ or $(S)-(-)-\mathbf{1 6 d}-\mathbf{g}$ was $>98 \%$ pure by ${ }^{1} \mathrm{H}$ NMR with the exception of $(S)-(-)-\mathbf{1 6 d}\left(95 \%\right.$ pure by $\left.{ }^{1} \mathrm{H} N \mathrm{NM}\right)$.

Data for (S)-(-)-16d (MeO $\left.\mathbf{H}_{2} \mathbf{C C H}(\mathbf{M e}) \mathbf{N H P h}\right):$ yield $\sim 3 \mathrm{mg}(5 \%)$, 21% ee, hexane/ethanol (95/5), flow rate $0.85 \mathrm{~mL} / \mathrm{min}$, retention time $(\min) 24.4$ and $37.3,[\alpha]_{\mathrm{D}}=-85^{\circ}(c=0.040)$.

Data for (S)-(-)-16e (MeO $\mathbf{H C H}_{\mathbf{2}} \mathbf{C C H}(\mathbf{M e}) \mathbf{N H}(\boldsymbol{o}$-anisyl)): yield 39 mg (58%), 97% ee, hexane/ethanol ($95 / 5$), flow rate $0.9 \mathrm{~mL} / \mathrm{min}$, retention time $(\min) 17.0$ and 21.3, $[\alpha]_{\mathrm{D}}=-42.8^{\circ}(c=0.150)$.

Data for (S)-(-)-16f($\mathbf{M e O}_{\mathbf{2}} \mathbf{C C H}(\boldsymbol{i}-\mathbf{B u}) \mathbf{N H}(\boldsymbol{o}$-anisyl)): yield 49 mg (61%), 54% ee, hexane/ethanol ($99 / 1$), flow rate $0.9 \mathrm{~mL} / \mathrm{min}$, retention time (min) 12.4 and $16.5,[\alpha]_{\mathrm{D}}=-70.9^{\circ}(c=0.170)$.
(S)-(-)-16f ($\mathbf{M e O}_{2} \mathrm{CCH}(i-\mathrm{Bu}) \mathrm{NH}(o-$-anisyl)) (entry 6, Table 4) was prepared by the general Scheme 3 procedure, except that 20 equiv (6.4 mmol) of ethylene carbonate was used (yield $19 \mathrm{mg}(24 \%, 79 \%$ ee), $\left.[\alpha]_{\mathrm{D}}=-69.2^{\circ}(c=0.105)\right)$.

Data for $(\mathbf{S})-(+)-\mathbf{1 6 g}\left(\mathbf{M e O}_{\mathbf{2}} \mathbf{C C H}\left(\mathbf{C H}_{\mathbf{2}} \mathbf{P h}\right) \mathbf{N H}(\boldsymbol{o}\right.$-anisyl)$)$): yield 31 $\mathrm{mg}(34 \%), 53 \%$ ee, hexane/ethanol $(80 / 20)$, flow rate $0.85 \mathrm{~mL} / \mathrm{min}$, retention time $(\mathrm{min}) 16.3$ and $30.5,[\alpha]_{\mathrm{D}}=+9.6^{\circ}(c=0.650)$.
$(S)-(+)-16 g\left(\mathrm{MeO}_{2} \mathrm{CCH}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{NH}(\right.$ o-anisyl)) (entry 8, Table 4) was prepared by the general Scheme 3 procedure, except that 5 equiv $(1.6 \mathrm{mmol})$ of ethylene carbonate was used (yield $28 \mathrm{mg}(31 \%, 77 \%$ ee), $\left.[\alpha]_{\mathrm{D}}=+10.6^{\circ}(c=0.360)\right)$.
(S)-(+)-16g ($\mathrm{MeO}_{2} \mathbf{C C H}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{NH}(o$-anisyl)) (entry 9, Table 4) was prepared by the general Scheme 3 procedure, except that 20 equiv $(6.4 \mathrm{mmol})$ of ethylene carbonate was used (yield $25 \mathrm{mg}(27 \%, 85 \%$ ee), $\left.[\alpha]_{\mathrm{D}}=+10.4^{\circ}(c=0.590)\right)$.
$(S)-(+)-16 \mathrm{~g}\left(\mathrm{MeO}_{2} \mathrm{CCH}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{NH}(o\right.$-anisyl)) (entry 10, Table 4) was prepared by the general Scheme 3 procedure, except that 60 equiv (19.2 mmol) of ethylene carbonate was used (yield $13 \mathrm{mg}(14 \%$, 89% ee $\left.),[\alpha]_{\mathrm{D}}=+10.1^{\circ}(c=0.310)\right)$.

Preparation of Methyl α-Amino Acid Esters in Scheme 4. After addition of the $\mathrm{RCH}_{2} \mathrm{~N}(\mathrm{Li}) \mathrm{R}^{\prime}$ to $(S, S)-[E B T H I] Z r M e(\mathrm{OTf})$ (Scheme 2 procedure), the solution was warmed to room temperature. The solvent was removed, and the residue containing (S, S) - $\mathbf{2 6}$ was treated with benzene $(20 \mathrm{~mL})$. The solution was transferred to a vacuum bulb containing ethylene carbonate ($56 \mathrm{mg}, 0.640 \mathrm{mmol}$) and $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ (202 $\mathrm{mg}, 1.28 \mathrm{mmol})$ in benzene (20 mL); the bulb was sealed and the solution heated to $70^{\circ} \mathrm{C}$ overnight. (S)-(-)-16d,f and $(R)-(+)-$ or $(R)-$ (-)-16e,g were $>98 \%$ pure by ${ }^{1} \mathrm{H}$ NMR.

Data for (S)-(-)-16d ($\left.\mathbf{M e O}_{\mathbf{2}} \mathbf{C C H}(\mathbf{M e}) \mathbf{N H P h}\right):$ yield $39 \mathrm{mg}(68 \%$, 22% ee $),[\alpha]_{\mathrm{D}}=-92.8^{\circ}(c=0.118)$.

Data for $(\boldsymbol{R})-(+)-16 e\left(\mathbf{M e O}_{\mathbf{2}} \mathbf{C C H}(\mathrm{Me}) \mathbf{N H}(\boldsymbol{o}\right.$-anisyl) $)$: yield 39 mg $(58 \%, 56 \% \mathrm{ee}),[\alpha]_{\mathrm{D}}=+38.1^{\circ}(c=0.150)$.

Data for $(S)-(-)-16 f\left(\mathbf{M e O}_{2} \mathbf{C C H}(\boldsymbol{i}-\mathrm{Bu}) \mathbf{N H}(\boldsymbol{o}\right.$-anisyl) $)$: yield 41 mg $(51 \%, 14 \% \mathrm{ee}),[\alpha]_{\mathrm{D}}=-72.7^{\circ}(c=0.138)$.

Data for $(R)-(-)-16 g\left(\mathbf{M e O}_{\mathbf{2}} \mathbf{C C H}\left(\mathbf{C H}_{2} \mathbf{P h}\right) \mathbf{N H}(o-\right.$-anisyl $\left.)\right)$: yield 45 $\mathrm{mg}(49 \%, 52 \%$ ee $),[\alpha]_{\mathrm{D}}=-11.7^{\circ}(c=0.770)$.
(R)-(-)-16g ($\mathrm{MeO}_{2} \mathrm{CCH}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{NH}(o$-anisyl)) (entry 12, Table 4) was prepared by the general Scheme 4 procedure, except that 20 equiv (6.4 mmol) of ethylene carbonate was used (yield $31 \mathrm{mg}(34 \%$, 54% ee $\left.),[\alpha]_{\mathrm{D}}=-11.9^{\circ}(c=0.530)\right)$.

Preparation of Methyl α-Amino Acid Esters by Scheme 5. After addition of the $\mathrm{RCH}_{2} \mathrm{~N}(\mathrm{Li}) \mathrm{R}^{\prime}$ to $(S, S)-[\mathrm{EBTHI}] \mathrm{ZrMe}(\mathrm{OTf})$ (Scheme 2 procedure), the solution was stirred at $-40^{\circ} \mathrm{C}$ for 1 h . In a separate flask, a cold $\left(-40^{\circ} \mathrm{C}\right)$ THF (20 mL) solution containing ethylene carbonate ($56 \mathrm{mg}, 0.640 \mathrm{mmol}$) and $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}(202 \mathrm{mg}, 1.28 \mathrm{mmol})$ was transferred by cannula to the flask containing $(S, S) \mathbf{- 2 6}$; the solution was stirred for 15 min at $-40^{\circ} \mathrm{C}$ before warming to room temperature and stirring overnight. The solvent was removed, and the residue was treated with benzene $(20 \mathrm{~mL})$ and $\mathrm{MeOH}(900 \mu \mathrm{~L})$. (S)-(-)-16c was $>98 \%$ pure by ${ }^{1} \mathrm{H}$ NMR.

Data for (S)-(-)-16c ($\mathbf{M e O}_{\mathbf{2}} \mathbf{C C H}(o-$ anisyl)NH(o-anisyl)): yield 41 $\mathrm{mg}(43 \%,>99 \%$ ee $),[\alpha]_{\mathrm{D}}=-57.6^{\circ}(c=0.085)$.

Preparation of rac-25g. A solution containing rac-[EBTHI]ZrMe ${ }_{2}$ $(318 \mathrm{mg}, 0.820 \mathrm{mmol})$ and $\mathrm{THF}(10 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and treated with $\mathrm{TfOH}(73 \mu \mathrm{~L}, 0.820 \mathrm{mmol})$. The pale yellow solution was warmed to room temperature and stirred for 1 h , followed by recooling to $-78{ }^{\circ} \mathrm{C}$. In a separate flask $\mathrm{BuLi}(1.6 \mathrm{M}, 513 \mu \mathrm{~L}, 0.820$ $\mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right) \mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ solution containing $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}(o$-anisyl) $(189 \mathrm{mg}, 0.820 \mathrm{mmol})$, and the solution was stirred for 5 min . The $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NLi}(o$-anisyl) was transferred by cannula to the rac-[EBTHI]ZrMe(OTf); the yellow solution was stirred
for 0.5 h at $-40^{\circ} \mathrm{C}$ before warming to room temperature. The solvent was evaporated, and the residue was dissolved in benzene and heated to $70^{\circ} \mathrm{C}$ overnight. The solution was filtered by cannula with benzene washes $(2 \times 5 \mathrm{~mL})$, and the filtrate was evaporated to yield an orange solid. ${ }^{1} \mathrm{H}$ NMR of the product mixture showed only one diastereomer. Yield: 434 mg (90% pure by ${ }^{1} \mathrm{H}$ NMR). An analytically pure sample was obtained from benzene/THF/hexanes (5/1/100). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.52(\mathrm{~d}, 2 \mathrm{H}), 7.31(\mathrm{t}, 2 \mathrm{H}), 7.18$ (t overlapped with residual $\left.\mathrm{C}_{6} \mathrm{H}_{6}, 1 \mathrm{H}\right), 6.71(\mathrm{t}, 1 \mathrm{H}), 6.32(\mathrm{t}, 1 \mathrm{H}), 6.26(\mathrm{~d}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=2.99$ $\mathrm{Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=3.01 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=2.77$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=2.74 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3$ H), 2.72-2.07 (m, 14 H$), 1.99-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.26(\mathrm{~m}, 5 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{NOZr}$: C, 72.37 ; H, 6.77; N, 2.41. Found: C, 72.14; H, 6.61; N, 2.47.
${ }^{1} \mathbf{H}$ NMR of $\mathbf{r a c - 2 8 g}$ and $\mathbf{r a c - 3 1 g}$ (Scheme 7). A 5 mm NMR tube was charged with rac-25g $(11.4 \mathrm{mg}, 0.0196 \mathrm{mmol})$ and $\sim 0.5 \mathrm{~mL}$ of $\mathrm{C}_{6} \mathrm{D}_{6}$. After complete dissolution of $\mathrm{rac} \mathbf{- 2 5 g}, 1.3$ equiv of ethylene carbonate ($2.3 \mathrm{mg}, 0.0263 \mathrm{mmol}$) was added to the orange solution. In $<1 \mathrm{~h}, \mathrm{rac}-\mathbf{2 5 g}$ was consumed and a pale yellow solution containing rac-28g/rac-31g (84/16, 68% de) was obtained as shown by its ${ }^{1} \mathrm{H}$ NMR. Selected ${ }^{1} \mathrm{H}$ NMR resonances of rac-31g $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 6.63$ (aromatic d, $J=7.93 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{CH}$ indenyl d, $J=2.44 \mathrm{~Hz}, 1$ $\mathrm{H}), 5.13(\mathrm{CH}$ indenyl d, $J=2.38 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{CH}$ methine d, $J=$ $8.05 \mathrm{~Hz}, 1 \mathrm{H})$. Similar treatment of $\mathrm{rac}-\mathbf{2 5 g}(11.7 \mathrm{mg}, 0.0201 \mathrm{mmol})$ with 9.3 equiv of ethylene carbonate $(16.4 \mathrm{mg}, 0.186 \mathrm{mmol})$ gave, after $<10 \mathrm{~min}$, a $94 / 6$ ($88 \% \mathrm{de}$) rac-28g/rac-31g ratio. ${ }^{1} \mathrm{H}$ NMR of rac$\mathbf{2 8 g}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.54(\mathrm{~d}, 2 \mathrm{H}), 7.24(\mathrm{t}, 2 \mathrm{H}), 7.15$ (aromatic m overlapped with CH indenyl resonance and residual $\mathrm{C}_{6} \mathrm{H}_{6}, 2 \mathrm{H}$), $6.96(\mathrm{t}, 1 \mathrm{H})$, $6.70(\mathrm{~d}, J=7.74 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{t}, 1 \mathrm{H})$, $5.55(\mathrm{~d}, J=2.47 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=2.94 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=$ $2.56 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{CH}$ methine dd, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.72$ $(\mathrm{m}, 2 \mathrm{H}), 3.53\left(\mathrm{OCH}_{3} \mathrm{~s}\right.$ overlapped with $\left.\mathrm{m}, 3 \mathrm{H}\right), 3.48-3.04(\mathrm{~m}$ overlapped with ethylene carbonate resonance, 4 H), 2.94-2.56 (m, 8 H), 2.47-2.06 (m, 9 H$), 1.60-1.09(\mathrm{~m}, 6 \mathrm{H})$.
$(\pm) \mathbf{- 2 3}(\boldsymbol{t}$-BuNHCOCH(Ph)NH(o-anisyl)). A 100 mL Schlenk flask was charged with 13b ($217 \mathrm{mg}, 0.5 \mathrm{mmol}$), benzene $(20 \mathrm{~mL})$, and t-BuNCO ($69 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$). After stirring overnight, the solution was treated with $\mathrm{MeOH}(1 \mathrm{~mL})$ and stirred for 4 h . The solvent was removed, and the residue was treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and filtered. The residue from the filtrate was spotted on a Chromatotron plate and eluted with ethyl acetate/hexanes (2/1); evaporation of solvent afforded a white solid that was washed with hexanes. Yield: $78 \mathrm{mg}(52 \%) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.48-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.89-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, 1 \mathrm{H}), 5.01(\mathrm{v}$ br s, 1 H$), 4.54(\mathrm{~s}, 1 \mathrm{H}), 3.82(3 \mathrm{H}, \mathrm{s})$, $1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170.3,147.0,139.1,136.6,128.9$, 128.1, 127.2, 121.0, 118.4, 111.5, 109.2, 65.1, 55.2, 50.9, 28.4. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.05; H, 7.74; $\mathrm{N}, 8.97$. Found: C, 72.69; H, 7.80; N, 8.97.
$(\pm) \mathbf{- 2 4}\left(\mathbf{H}_{2} \mathbf{N C O C H}(\mathbf{P h}) \mathbf{N H}(\boldsymbol{o}\right.$-anisyl)$)$. Preparation of (\pm) - 24 was carried out as described above for $(\pm)-\mathbf{2 3}$, except that $\mathrm{Me}_{3} \mathrm{SiNCO}(160$ $\mu \mathrm{L}, 1.0 \mathrm{mmol}$) replaced t-BuNCO. The residue from the filtrate was spotted on a Chromatotron plate and eluted with ethyl acetate/hexanes (7/1); evaporation of solvent afforded a white solid that was washed with hexanes. Yield: $54 \mathrm{mg}(42 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.53-7.36$ (m, 5H), 6.89-6.66(m, 3H), $6.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, 1 \mathrm{H}), 5.53(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 174.1$, $147.1,138.5,136.3,129.2,128.6,127.4,121.2,118.7,111.3,109.5$, 64.1, 53.4. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 70.29; H, 6.29; N, 10.93. Found: C, 70.24; H, 6.29; N, 10.87.
(\boldsymbol{S})-(+)-19 (\boldsymbol{t}-BuNHCOCH(Ph)NHPh) (Scheme 8). A solution containing $(S, S)-[E B T H I] \mathrm{ZrMe}_{2}(579 \mathrm{mg}, 1.5 \mathrm{mmol})$ and THF $(10 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with $\mathrm{TfOH}(133 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$. The pale yellow solution was warmed to room temperature and stirred for 1 h followed by recooling to $-78^{\circ} \mathrm{C}$. In a separate flask BuLi $(2.0 \mathrm{M}, 750 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right) \mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ solution containing $\mathrm{PhCH}_{2} \mathrm{NHPh}(275 \mathrm{mg}, 1.5 \mathrm{mmol})$, and the solution was stirred for 5 min . The $\mathrm{PhCH}_{2} \mathrm{NLi}(\mathrm{Ph})$ was transferred by cannula to the $(S, S)-[E B T H I] Z r M e(O T f)$, and the solution was stirred for 0.5 h at $-78^{\circ} \mathrm{C}$ and then warmed to room temperature and stirred overnight. Neat t-BuNCO ($177 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) was added, and the resulting red solution was stirred for 1 h and then treated with $\mathrm{MeOH}(1 \mathrm{~mL})$. The solvent was removed, the residue was treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$,
and the solution was filtered. The residue from the filtrate was spotted on a Chromatotron plate and eluted with ethyl acetate/hexanes (7/1); evaporation of solvent afforded a white solid that was washed with hexanes (yield 264 mg (62%), 92% ee, hexane/2-propanol (90/10), flow rate $0.6 \mathrm{~mL} / \mathrm{min}$, retention time $(\mathrm{min}) 14.1$ and $21.8,[\alpha]_{\mathrm{D}}=+76.5^{\circ}(c$ $=0.780)$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for $(\pm)-19$ were reported earlier; ${ }^{9}$ $(S)-(+)-19$ was $>98 \%$ pure by ${ }^{1} \mathrm{H}$ NMR.
$(S)-(+)-20\left(\mathbf{H}_{2} \mathbf{N C O C H}(\mathbf{P h}) \mathbf{N H P h}\right)$ (Scheme 8) was prepared like $(S)-(+)-19$, except that neat $\mathrm{Me}_{3} \mathrm{SiNCO}(262 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ replaced t-BuNCO. The residue was spotted on a Chromatotron plate and eluted with hexanes/ethyl acetate ($2 / 1$); after evaporation, the white solid was washed with hexanes (yield $173 \mathrm{mg}(51 \%), 80 \%$ ee, hexane/2-propanol (85/15), flow rate $0.6 \mathrm{~mL} / \mathrm{min}$, retention time $(\mathrm{min}) 37.6$ and $48.2,[\alpha]_{\mathrm{D}}$ $\left.=146.9^{\circ}(c=0.770)\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for $(\pm)-20$ were reported earlier; ${ }^{9}(S)-(+)-20$ was $>98 \%$ pure by ${ }^{1} \mathrm{H}$ NMR.
(S)-(-)-23 (t-BuNHCOCH(Ph)NH(o-anisyl)) (Scheme 8) was prepared like $(S)-(+)-\mathbf{1 9 b}$, but with the following modifications. A solution containing $\mathrm{PhCH}_{2} \mathrm{NH}\left(o\right.$-anisyl) $(69 \mathrm{mg}, 0.323 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O}$ $(5 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with $\mathrm{BuLi}(1.6 \mathrm{M}, 200 \mu \mathrm{~L}$, 0.320 mmol), and the solution was stirred for 5 min . The $\mathrm{PhCH}_{2} \mathrm{NLi}-$ (o-anisyl) was transferred by cannula to a cold $\left(-40{ }^{\circ} \mathrm{C}\right)$ solution containing $(S, S)-[E B T H I] Z r M e(O T f)(169 \mathrm{mg}, 0.325 \mathrm{mmol})$ in THF (5 mL); the flask that contained $\mathrm{PhCH}_{2} \mathrm{NLi}(o$-anisyl) was rinsed with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$. After 5 min at $-40{ }^{\circ} \mathrm{C}$ and overnight at room temperature, the orange-red solution was treated with neat t-BuNCO ($46 \mu \mathrm{~L}, 0.400 \mathrm{mmol}$) and stirred overnight. The pale yellow solution was treated with $\mathrm{MeOH}(1 \mathrm{~mL})$ and stirred for 4 h (yield 30 mg (31%), $>99 \%$ ee, hexane/ethanol (95/5), flow rate $0.9 \mathrm{~mL} / \mathrm{min}$, retention time $(\min) 8.0$ and $\left.10.4,[\alpha]_{\mathrm{D}}=-40.0(c=0.123)\right) .(S)-(-)-23$ was $>98 \%$ pure by ${ }^{1} \mathrm{H}$ NMR.
(S)-(-)-24 ($\mathbf{H}_{2} \mathbf{N C O C H}(\mathbf{P h}) \mathbf{N H}(o$-anisyl)) (Scheme 8) was prepared in the same way as $(S)-(-)-\mathbf{2 3}$, except that neat $\mathrm{Me}_{3} \mathrm{SiNCO}(54 \mu \mathrm{~L}$, 0.400 mmol) replaced t-BuNCO (yield $22 \mathrm{mg}(25 \%), 98 \%$ ee, hexane/ ethanol ($80 / 20$), flow rate $0.8 \mathrm{~mL} / \mathrm{min}$, retention time (min) 16.6 and $\left.19.5,[\alpha]_{\mathrm{D}}=-100.9^{\circ}(c=0.095)\right) .(S)-(-)-24$ was $>98 \%$ pure by ${ }^{1} \mathrm{H}$ NMR.

Compound rac-25b was prepared like rac-25g, but with the following modifications. $\mathrm{PhCH}_{2} \mathrm{NH}(o$-anisyl) $(175 \mathrm{mg}, 0.820 \mathrm{mmol})$ replaced $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(o\right.$-anisyl). After the $\mathrm{PhCH}_{2} \mathrm{NLi}(o$-anisyl) was transferred by cannula to the rac-[EBTHI $] \mathrm{ZrMe}(\mathrm{OTf})$, the resulting yellow solution was warmed to room temperature and the solution turned red. After 1 h , the solvent was evaporated and the orange red solid was dissolved in benzene (25 mL); the solution was filtered by cannula, the solid was washed with benzene $(2 \times 5 \mathrm{~mL})$, and the filtrate was evaporated to yield crude $\mathrm{rac}-\mathbf{2 5 b} .{ }^{1} \mathrm{H}$ NMR of the product mixture showed only one diasteromer. Yield: 440 mg (85% pure by ${ }^{1} \mathrm{H}$ NMR). An analytically pure sample was obtained from benzene/THF/hexanes (5/1/100). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.48(\mathrm{~d}, 2 \mathrm{H}), 7.39(\mathrm{t}, 2 \mathrm{H}), 7.07(\mathrm{t}, 1$ H), $6.98(\mathrm{t}, 1 \mathrm{H}), 6.68(\mathrm{~d}, 1 \mathrm{H}), 6.53(\mathrm{t}, 1 \mathrm{H}), 6.48(\mathrm{~d}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J$ $=3.07 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=2.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=3.09 \mathrm{~Hz}, 1$ H), $4.70(\mathrm{~d}, J=2.76 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.67-1.94$ $(\mathrm{m}, 15 \mathrm{H}), 1.69-1.18(\mathrm{~m}, 5 \mathrm{H})$.

Compound rac-25a was prepared like rac-25b, but with the following modifications. $\mathrm{PhCH}_{2} \mathrm{NHPh}(59 \mathrm{mg}, 0.320 \mathrm{mmol})$ replaced $\mathrm{PhCH}_{2} \mathrm{NH}$ (o-anisyl). After the $\mathrm{PhCH}_{2} \mathrm{NLiPh}^{2}$ was transferred by cannula to the rac-[EBTHI]ZrMe(OTf), the yellow solution turned red as it warmed to room temperature. After 1 h , the solvent was evaporated to yield an orange solid. Compound rac-25a was $\sim 38 \%$ pure (the remaining 62% was a mixture of LiOTf, THF, and ca. $10-15 \%$ $\mathrm{PhNHCH}_{2} \mathrm{Ph}$) and was used without further purification. Selected ${ }^{1} \mathrm{H}$ NMR resonances of rac-25a (THF- d_{8}): $\delta 6.28$ (aromatic $\mathrm{t}, 1 \mathrm{H}$), 5.51 (CH indenyl d, $J=2.49 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{CH}$ indenyl d, $J=2.55 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26$ (CH indenyl d, $J=2.61 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (CH indenyl d, $J=$ $2.61 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{CH}$ methine s, 1 H$)$.
${ }^{1}$ H NMR of $\boldsymbol{r a c - 3 5}$ (Scheme 9). A 5 mm NMR tube was charged with rac-25b $(12.0 \mathrm{mg}, 0.0210 \mathrm{mmol}), \mathrm{THF}-d_{8}(\sim 0.5 \mathrm{~mL})$, and 4.1 equiv of neat t-BuNCO ($6.2 \mathrm{mg}, 0.0625 \mathrm{mmol}$); after 6 days, rac-25b was consumed. Selected ${ }^{1} \mathrm{H}$ NMR resonances of $\operatorname{rac}-35\left(\right.$ THF- $\left.d_{8}\right): \delta$ 7.47 (aromatic d, 2 H), 6.53 (aromatic t, 1 H), 6.28 (aromatic d, 1 H), 5.98 (aromatic d, 1 H), $5.88(\mathrm{CH}$ indenyl d, $J=2.61 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (CH indenyl d, $J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{CH}$ indenyl d, $J=2.65 \mathrm{~Hz}$, $1 \mathrm{H}), 5.61(\mathrm{CH}$ indenyl d, $J=2.70 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{CH}$ methine s, 1
$\mathrm{H}), 4.33\left(\mathrm{OCH}_{3} \mathrm{~s}, 3 \mathrm{H}\right), 1.19(t-\mathrm{Bu} \mathrm{s}, 9 \mathrm{H})$. The minor diastereomer rac- $\mathbf{3 7}$ was not detected by ${ }^{1} \mathrm{H}$ NMR.
(S)-(+)-19 (\boldsymbol{t}-BuNHCOCH(Ph)NHPh) (Scheme 10) was prepared like $(S)-(+)-19$, but with the following modifications. The solution that contained $(S, S, R)-\mathbf{2 5 a}(0.320 \mathrm{mmol}, 20 \mathrm{mM})$ was treated with a dilute benzene solution of t-BuNCO $(0.256 \mathrm{mmol}, 32 \mathrm{mM})$; methanolysis and workup gave $(S)-(+)-19$ in 45% yield (36% ee, hexane/ 2-propanol (92/8), flow rate $0.85 \mathrm{~mL} / \mathrm{min}$, retention time (min) 11.8 and 20.3).
${ }^{1} \mathbf{H}$ NMR of $\boldsymbol{r a c}-\mathbf{3 8}$ and $\boldsymbol{r a c}-39$ (Scheme 11). A 5 mm NMR tube was charged with rac-25g $(11.7 \mathrm{mg}, 0.0201 \mathrm{mmol})$ and THF- $d_{8}(\sim 0.5$ mL). After complete dissolution of rac-25g, 26 equiv of neat t-BuNCO ($45 \mathrm{mg}, 0.454 \mathrm{mmol}$) was added to the orange solution. In $<5 \mathrm{~min}$, the rac-25g was consumed and a $95 / 5$ ($90 \% \mathrm{de}$) rac-38/rac-39 product ratio was shown by ${ }^{1} \mathrm{H}$ NMR. Selected ${ }^{1} \mathrm{H}$ NMR resonances of rac38 (THF- d_{8}): $\delta 7.47(\mathrm{~d}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, 2 \mathrm{H}), 7.03(\mathrm{t}, 1 \mathrm{H})$, $6.94(\mathrm{~d}, 1 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}), 6.38(\mathrm{t}, 1 \mathrm{H}), 6.17(\mathrm{~d}, 1 \mathrm{H}), 5.69$ (apparent q, two overlapping d from CH indenyl resonances, $J=2.71 \mathrm{~Hz}$, and $J=2.71 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~d}, J=2.72 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=2.70 \mathrm{~Hz}$, $1 \mathrm{H}), 4.44(\mathrm{CH}$ methine dd, $J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 4.23\left(\mathrm{OCH}_{3} \mathrm{~s}, 3 \mathrm{H}\right)$, 3.46-3.40 (dd, 1 H$), 1.41$ (t-Bu s, 9 H$)$. Similar treatment of rac-25g $(10.2 \mathrm{mg}, 0.0176 \mathrm{mmol})$ with 1.3 equiv of t-BuNCO $(2.2 \mathrm{mg}, 0.0222$ mmol) in THF- d_{8} gave, after 3 h , a $64 / 36$ ($28 \% \mathrm{de}$) rac-38/rac-39 product ratio. Selected ${ }^{1} \mathrm{H}$ NMR resonances of rac- 39 (THF- d_{8}): δ 7.51 (aromatic d overlapped with rac-38 d, $J=7.36 \mathrm{~Hz}, 2 \mathrm{H}$), 5.92 $(\mathrm{CH}$ indenyl $d, J=2.86 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{CH}$ indenyl d, $J=2.50 \mathrm{~Hz}$, $1 \mathrm{H}), 5.46(\mathrm{CH}$ indenyl d, $J=2.71 \mathrm{~Hz}, 1 \mathrm{H}), 4.34\left(\mathrm{OCH}_{3} \mathrm{~s}, 3 \mathrm{H}\right), 1.27$ (t-Bu s, 9 H).
${ }^{1}$ H NMR of $\mathbf{r a c}-40$ (Reaction 16). A 5 mm NMR tube was charged with rac-25a ($\sim 11 \mathrm{mg}, 0.02 \mathrm{mmol})$, THF- $d_{8}(\sim 0.5 \mathrm{~mL})$, and neat $\mathrm{Me}_{3}-$ $\operatorname{SiNCO}(2.8 \mathrm{mg}, 0.024 \mathrm{mmol})$. After 5 min , the ${ }^{1} \mathrm{H}$ NMR showed rac40 (ca. $90 \% \mathrm{de}$). Selected ${ }^{1} \mathrm{H}$ NMR resonances of rac-40 (THF- d_{8}): $\delta 7.47$ (aromatic d, 2 H), $6.13(\mathrm{CH}$ indenyl d, 1 H$), 5.93(\mathrm{CH}$ indenyl d, 1 H$), 5.88($ aromatic d, 2 H$), 5.56(\mathrm{CH}$ indenyl resonance overlapped with CH methine s, 2 H), $5.24(\mathrm{CH}$ indenyl d, 1 H$), 0.02(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{1} H$ NMR of rac-41a (Reaction 16). A 5 mm NMR tube was charged with $\mathrm{rac}-\mathbf{2 5 a}(\sim 11 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\sim 0.5 \mathrm{~mL}$ of THF- d_{8}. After complete dissolution of $\mathrm{rac}-\mathbf{2 5 a}, 4.2$ equiv of 2-butyne $(4.5 \mathrm{mg}$, 0.083 mmol) was added to the orange-red solution. After $24 \mathrm{~h}, 2$-butyne was consumed and the red solution showed rac-41a in 24% de.

In a similar fashion, a 5 mm NMR tube was charged with rac-25a ($\sim 11 \mathrm{mg}, 0.02 \mathrm{mmol}$) and neat 2-butyne ($\sim 0.5 \mathrm{~mL}, 6.4 \mathrm{mmol}$). After standing overnight, the excess 2-butyne was evaporated and the orange residue was dissolved in THF- d_{8}. The ${ }^{1} \mathrm{H}$ NMR showed rac-41a in $>99 \%$ de. Selected ${ }^{1} \mathrm{H}$ NMR resonances of rac-41a (THF- d_{8}): $\delta 6.79$ $(\mathrm{CH}$ indenyl d, 1 H$), 5.92(\mathrm{CH}$ indenyl d, 1 H$), 5.78$ (aromatic d, 2 H), $5.34(\mathrm{CH}$ indenyl d, 1 H$), 5.05(\mathrm{CH}$ indenyl d, 1 H$), 4.89(\mathrm{CH}$ methine br s, 1 H$), 1.92\left(\mathrm{CH}_{3}\right.$ s overlapped with indenyl resonances), $1.24\left(\mathrm{CH}_{3}\right.$ s overlapped with indenyl resonances).

Similar treatment of rac-25a $(0.02 \mathrm{mmol})$ with n equiv of 2-butyne ($\mathrm{mg}, \mathrm{mmol}$) gave the following de's of rac-41a: 4.2 equiv $(4.5 \mathrm{mg}$, 0.083 mmol), $28 \% \mathrm{de} ; 13$ equiv ($14 \mathrm{mg}, 0.26 \mathrm{mmol}$), 46% de; 32 equiv ($35 \mathrm{mg}, 0.64 \mathrm{mmol}$), $60 \% \mathrm{de}$.

Preparation of 44. A solution containing $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}(3.02 \mathrm{~g}, 12$ $\mathrm{mmol})$ and THF (40 mL) was cooled to $-78^{\circ} \mathrm{C}$ and treated with TfOH $(1.06 \mathrm{~mL}, 12 \mathrm{mmol})$. The pale yellow solution was warmed to room temperature, stirred for 1 h , and again cooled to $-78^{\circ} \mathrm{C}$. In a separate flask $\mathrm{BuLi}(2.0 \mathrm{M}, 6 \mathrm{~mL})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right) \mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ solution containing (o-anisyl) $\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{Ph}(2.73 \mathrm{~g}, 12 \mathrm{mmol})$; the solution was stirred for 5 min . The pink solution containing (o-anisyl)$\mathrm{CH}_{2} \mathrm{~N}(\mathrm{Li}) \mathrm{CH}_{2} \mathrm{Ph}$ was transferred by cannula to the $\mathrm{Cp}_{2} \mathrm{ZrMe}(\mathrm{OTf})$, stirred for 0.5 h at $-78{ }^{\circ} \mathrm{C}$, and warmed to room temperature. The solvent was evaporated from the red solution, the residue was treated with benzene (75 mL), the solution was filtered by cannula, and the residue was washed with benzene (25 mL). The filtrate was evaporated, and the residue was treated with hexanes $(100 \mathrm{~mL})$ to give a tan precipitate. The solid was filtered by cannula, washed with hexanes $(2 \times 30 \mathrm{~mL})$, and dried overnight under vacuum. Yield: $3.43 \mathrm{~g}(62 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.39(\mathrm{~d}, 1 \mathrm{H}), 7.31-7.09(\mathrm{~m}, 7 \mathrm{H}), 6.59(\mathrm{~d}, 1 \mathrm{H})$, $5.75(\mathrm{Cp} \mathrm{s}, 10 \mathrm{H}), 4.53\left(\mathrm{CH}_{2} \mathrm{~s}, 2 \mathrm{H}\right), 4.35\left(\mathrm{CH}_{2} \mathrm{~s}, 2 \mathrm{H}\right), 3.25\left(\mathrm{OCH}_{3}\right.$ $\mathrm{s}, 3 \mathrm{H}), 0.32\left(\mathrm{ZrCH}_{3} \mathrm{~s}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 158.1,142.4,129.5$, 128.6, 128.4 (DEPT), 128.0 (DEPT), 127.4 (DEPT), 126.5, 120.4, $110.2,110.0(\mathrm{Cp}), 59.5\left(\mathrm{CH}_{2}\right.$, DEPT $), 54.5\left(\mathrm{OCH}_{3}, \mathrm{DEPT}\right), 54.0\left(\mathrm{CH}_{2}\right.$, DEPT), $20.9\left(\mathrm{ZrCH}_{3}\right.$, DEPT). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NOZr}: \mathrm{C}, 67.49$; H, 6.32; N, 3.03. Found: C, 67.20; H, 6.14; N, 2.99.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 45 (Scheme 14). A 5 mm NMR tube was charged with $44(50 \mathrm{mg}, 0.108 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(\sim 0.5 \mathrm{~mL})$. The sample was sealed, and the tan solution was heated to $80^{\circ} \mathrm{C}$ for 1 h to give a deep red solution. ${ }^{1} \mathrm{H}$ NMR showed the major $(E)-45(84 \%)$ and minor $(Z)-\mathbf{4 5}(16 \%)$ isomers. ${ }^{1} \mathrm{H}$ NMR of $(E)-\mathbf{4 5}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 8.09$ $(\mathrm{CH}=\mathrm{N} \mathrm{s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 7.23-7.07$ (aromatic m overlapped with aromatic resonances of $(\mathrm{Z})-\mathbf{4 5}), 5.71(\mathrm{Cp} \mathrm{s}, 10 \mathrm{H}), 4.56\left(\mathrm{CH}_{2} \mathrm{~s}\right.$, $2 \mathrm{H}), 3.69\left(\mathrm{OCH}_{3} \mathrm{~s}, 3 \mathrm{H}\right)$. Selected ${ }^{1} \mathrm{H}$ NMR of $(\mathrm{Z})-\mathbf{4 5}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.95$ $(\mathrm{CH}=\mathrm{N} \mathrm{s}, 1 \mathrm{H}), 5.85(\mathrm{Cp} \mathrm{s}, 10 \mathrm{H}), 4.52\left(\mathrm{CH}_{2} \mathrm{~s}, 2 \mathrm{H}\right), 3.79\left(\mathrm{OCH}_{3} \mathrm{~s}\right.$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR of $(E)-\mathbf{4 5}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 176.0(\mathrm{CH}=\mathrm{N}, \mathrm{DEPT}), 142.5$, 141.7, 140.3, 129.5, 128.8, 128.2 (DEPT), 128.1 (DEPT), 127.7, 127.1, 123.2, $111.0(\mathrm{Cp}$ of $(Z)-45), 109.9(\mathrm{Cp}$ of $(E)-45), 61.6\left(\mathrm{CH}_{2}\right.$, DEPT), $59.2\left(\mathrm{OCH}_{3}\right.$, DEPT $)$.

Acknowledgment. We thank Dr. Patricia A. Goodson (University of Wyoming) for the result in ref 8. We also thank Professor Stephen L. Buchwald for a copy of Dr. Robert Grossman's Ph.D. thesis. We are also grateful to Professor Albert I. Meyers for the use of his chiral HPLC apparatus. This work was supported by NSF Grant CHE-9120454.

JA953893H

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, March 15, 1996.
 (1) Because organozirconocenes of this type behave with electrophiles as if they have a $\mathrm{Zr}-\mathrm{C} \sigma$ bond, we prefer to call them zirconaaziridines rather than zirconium imines.
 (2) Williams has said that "asymmetric carboxylation [at the α position of an amine] is a surprisingly rarely studied approach [and] ... a future area of investigation". Williams, R. M. Synthesis of Optically Active α-Amino Acids; Pergamon: Oxford, 1989; Vol. 7.
 (3) (a) Meyers, A. I.; Hellring, S.; Hoeve, W. T. Tetrahedron Lett. 1981, 22, 5115. (b) Bolster, J. M.; Hoeve, W. T.; Vaalburg, W.; Van Dijk, T. H.; Zijlstra, J. B.; Paans, A. M. J.; Wynberg, H.; Woldring, M. G. Int. J. Appl. Radiat. Isot. 1985, 36, 339.
 (4) Duhamel, L.; Duhamel, P.; Fouquay, S.; Eddine, J. J.; Peschard, O.; Plaquevent, J.-C.; Ravard, A.; Solliard, R.; Valnot, J.-Y.; Vincens, H. Tetrahedron 1988, 44, 5495.
 (5) Beak, P.; Kerrick, S. T.; Wu, S.; Chu, J. J. Am. Chem. Soc. 1994, 116, 3231.

[^1]: (6) Chong, J. M.; Park, S. B. J. Org. Chem. 1992, 57, 2220.
 (7) Buchwald, S. L.; Watson, B. T.; Wannamaker, M. W.; Dewan, J. C. J. Am. Chem. Soc. 1989, 111, 4486.
 (8) X -ray analysis of $\mathbf{1 3 b}\left(\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=o\right.$-anisyl) shows the oxygen of the o-anisyl substituent bound to Zr: Gately, D. A.; Norton, J. R.; Goodson, P. A. Unpublished results.

[^2]: (9) Gately, D. A.; Norton, J. R.; Goodson, P. A. J. Am. Chem. Soc. 1995, 117, 986.
 (10) (a) Grossman, R. B.; Davis, W. M.; Buchwald, S. L. J. Am. Chem. Soc. 1991, 113, 2321. (b) Grossman, R. B. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1991.
 (11) Wild, F. R. W. P.; Wasiucionek, M.; Huttner, G.; Brintzinger, H. H. J. Organomet. Chem. 1985, 288, 63.
 (12) When they attempted to prepare the EBTHI analog of 13a in benzene, Grossman and Buchwald obtained the zirconaisoindole A below. Analogous species were formed in all cases when $\mathrm{R}=$ aryl and no coordinating atoms were present (see ref 10b).

[^3]: (14) Christoskova, St.; Berova, B.; Simova, E.; Spassov, St.; Kurtev, B.; Snatzke, G. Proceedings of the F.E.C.S. International Conference on Circular Dichroism; VCH: Weinheim, 1987; pp 315-21.

[^4]: (17) The only exception was the ee (18\%) of (S)-32a $\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ph}\right)$. However, Grossman reported that the de of its precursor $((S, S, S)-41 a)$ varied "with the temperature and other conditions" (refs 10 b and 12).
 (18) (a) Seeman, J. I. Chem. Rev. 1983, 83, 83. (b) Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds; John Wiley and Sons: New York, 1994; pp 648-655. (c) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, 3rd ed.; Plenum: New York, 1990; pp 215-216.

[^5]: ${ }^{a}[\mathbf{2 5 a}, \mathbf{c}, \mathbf{f}, \mathbf{g}]=0.32 \mathrm{mmol}$, ca. 8 mM . In entries $1-4, \mathbf{2 5 a}, \mathbf{c}$ were prepared at room temperature, followed by addition of ethylene carbonate in benzene or THF at room temperature. In entries $5-10, \mathbf{2 5 f}, \mathrm{~g}$ were prepared at $70^{\circ} \mathrm{C}$, followed by addition of ethylene carbonate at room temperature. In entries $11-12, \mathbf{2 5 f}, \mathbf{g}$ were prepared at $70{ }^{\circ} \mathrm{C}$ in the presence of ethylene carbonate. ${ }^{b}$ Isolated yields, $>98 \%$ pure by HPLC and ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Obtained from stationary phase chiral HPLC. ${ }^{d} \mathrm{Ar}=o$-anisyl.

[^6]: (19) Low concentrations of isocyanates must be used to effect a significant change in the ee's of the phenyl-substituted amides 19 and $\mathbf{2 0}$; the isocyanate must be added as a dilute solution so that mixing is complete before the insertion reaction occurs. In contrast, because the o-anisylsubstituted zirconaaziridines react more slowly, the concentrations of isocyanate low enough to effect a change in the ee's of the o-anisylsubstituted amides $\mathbf{2 3}$ and $\mathbf{2 4}$ can be added neat to 25b.

[^7]: (20) Grossman suggested that the $\mathbf{3 0} \rightleftharpoons \mathbf{2 5}$ epimerization involved the $\mathbf{4 3} \rightleftharpoons \mathbf{4 3}^{\prime}$ equilibrium in Scheme 13 (see ref 10 b).

[^8]: (21) Complex $\mathbf{4 5}$ failed to give crystals suitable for X-ray analysis; it was unaffected by ethylene carbonate at room temperature or at $80^{\circ} \mathrm{C}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. Moreover, (o-anisyl) $\mathrm{N}=\mathrm{CH}(\mathrm{Ph})$ did not displace the imine fragment in 45 to give the known complex 13b.

